Efficient Imputation Methods to Handle Missing Data in Sample Surveys

被引:0
|
作者
Singh, G. N. [1 ]
Jaiswal, Ashok K. [1 ]
机构
[1] Indian Sch Mines, Indian Inst Technol, Dept Math & Comp, Dhanbad 826004, Bihar, India
关键词
Missing data; Mean square error; Imputation method; Population mean; Percent relative efficiency (PRE); RATIO METHOD; ESTIMATORS;
D O I
10.1007/s42519-022-00266-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper develops a class of modified difference-cum-exponential type imputation methods and corresponding point estimators to estimate the finite population mean in case of missing data problem. We have shown that the proposed strategies use the available auxiliary information effectively and give better results in comparison to some of the existing estimators. The performance of the proposed procedures over others is supplemented by the Monte Carlo simulation technique and presented through tables and graphs. Suitable recommendations are made to survey researchers.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Missing data imputation using fuzzy-rough methods
    Amiri, Mehran
    Jensen, Richard
    [J]. NEUROCOMPUTING, 2016, 205 : 152 - 164
  • [42] Evaluation of missing data imputation methods for human osteometric measurements
    Liu, Xiaoming
    Pang, Jinyong
    [J]. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY, 2024, 183 : 103 - 104
  • [43] Comparison of imputation and imputation-free methods for statistical analysis of mass spectrometry data with missing data
    Taylor, Sandra
    Ponzini, Matthew
    Wilson, Machelle
    Kim, Kyoungmi
    [J]. BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [44] Enabling network inference methods to handle missing data and outliers
    Abel Folch-Fortuny
    Alejandro F. Villaverde
    Alberto Ferrer
    Julio R. Banga
    [J]. BMC Bioinformatics, 16
  • [45] Enabling network inference methods to handle missing data and outliers
    Folch-Fortuny, Abel
    Villaverde, Alejandro F.
    Ferrer, Alberto
    Banga, Julio R.
    [J]. BMC BIOINFORMATICS, 2015, 16
  • [46] Imputation Methods for Handling Missing Dietary Supplement Dosage Data
    Leung, June
    Dwyer, Johanna
    Hibberd, Patricia
    Jacques, Paul
    Rand, William
    [J]. JOURNAL OF RENAL NUTRITION, 2010, 20 (05) : 342 - 347
  • [47] Methods for imputation of missing values in air quality data sets
    Junninen, H
    Niska, H
    Tuppurainen, K
    Ruuskanen, J
    Kolehmainen, M
    [J]. ATMOSPHERIC ENVIRONMENT, 2004, 38 (18) : 2895 - 2907
  • [48] Missing data incremental imputation through tree based methods
    Conversano, C
    Cappelli, C
    [J]. COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 455 - 460
  • [49] Optimization methods for the imputation of missing values in Educational Institutions Data
    Aureli, D.
    Bruni, R.
    Daraio, C.
    [J]. METHODSX, 2021, 8
  • [50] From Predictive Methods to Missing Data Imputation: An Optimization Approach
    Bertsimas, Dimitris
    Pawlowski, Colin
    Zhuo, Ying Daisy
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 18