Study on the Extension Models to Handle Missing Values

被引:0
|
作者
Yin, Xuri [1 ]
机构
[1] Inst Automobile Management PLA, Dept Transportat Command, Bengbu 233011, Anhui, Peoples R China
关键词
rough set; incomplete information system; tolerance relation; similarity relation; missing values;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The starting point of the rough sets theory is an observation that objects having the same description are indiscernible with respect to the available information. But the indiscernibility relation may be too rigid in some situations. Therefore several generalizations of the rough sets theory have been proposed. Some of them extend the indiscernibility relation using more general similarity or tolerance relations. In this paper, several extension models of rough set under incomplete information are discussed. Furthermore, the performances of these extended relations are compared also.
引用
收藏
页码:111 / 114
页数:4
相关论文
共 50 条
  • [31] Extension of first order predictive functional controllers to handle higher order internal models
    Khadir, Mohamed Tarek
    Ringwood, John V.
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2008, 18 (02) : 229 - 239
  • [32] Linear mixed models to handle missing at random data in trial-based economic evaluations
    Gabrio, Andrea
    Plumpton, Catrin
    Banerjee, Sube
    Leurent, Baptiste
    [J]. HEALTH ECONOMICS, 2022, 31 (06) : 1276 - 1287
  • [33] Do not Be Afraid of Missing Data: Modern Approaches to Handle Missing Information
    Montenegro Montenegro, Esteban
    Oh, Youngha
    Chesnut, Steven
    [J]. ACTUALIDADES EN PSICOLOGIA, 2015, 29 (119): : 29 - 42
  • [34] GENERALIZING THE MULTIVARIATE APPROACH TO REPEATED-MEASURES DESIGNS TO HANDLE MISSING VALUES AND NON-LINEAR TRENDS
    OBRIEN, RG
    [J]. BIOMETRICS, 1981, 37 (03) : 616 - 616
  • [35] Near-optimal rate of consistency for linear models with missing values
    Ayme, Alexis
    Boyer, Claire
    Dieuleveut, Aymeric
    Scornet, Erwan
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [36] Benchmarking missing-values approaches for predictive models on health databases
    Perez-Lebel, Alexandre
    Varoquaux, Gael
    Le Morvan, Marine
    Josse, Julie
    Poline, Jean-Baptiste
    [J]. GIGASCIENCE, 2022, 11
  • [37] Dealing with Missing Predictor Values When Applying Clinical Prediction Models
    Janssen, Kristel J. M.
    Vergouwe, Yvonne
    Donders, A. Rogier T.
    Harrell, Frank E., Jr.
    Chen, Qingxia
    Grobbee, Diederick E.
    Moons, Karel G. M.
    [J]. CLINICAL CHEMISTRY, 2009, 55 (05) : 994 - 1001
  • [38] Impact of missing predictor values on risk stratification models in cardiac surgery
    Omar, RZ
    Ambler, G
    Royston, P
    Taylor, KM
    [J]. CIRCULATION, 2005, 111 (20) : E337 - E337
  • [39] Logistic regression models with missing covariate values for complex survey data
    Gao, SJ
    Hui, SL
    [J]. STATISTICS IN MEDICINE, 1997, 16 (21) : 2419 - 2428
  • [40] Regression models for mixed discrete and continuous responses with potentially missing values
    Fitzmaurice, GM
    Laird, NM
    [J]. BIOMETRICS, 1997, 53 (01) : 110 - 122