Height functions on quaternionic Stiefel manifolds

被引:0
|
作者
Macias-Virgos, Enrique [1 ]
Oprea, John [2 ]
Strom, Jeff [3 ]
Tanre, Daniel [4 ]
机构
[1] Univ Santiago de Compostela, Dept Geometry & Topol, Inst Math, Santiago De Compostela 15782, Spain
[2] Cleveland State Univ, Dept Math, Cleveland, OH 44115 USA
[3] Western Michigan Univ, Dept Math, Kalamazoo, MI 49008 USA
[4] Univ Lille 1, Dept Math, F-59655 Villeneuve Dascq, France
关键词
LUSTERNIK-SCHNIRELMANN CATEGORY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we study height functions on quaternionic Stiefel manifolds and prove that all these height functions areMorse-Bott. Among them, we characterize the Morse functions and give a lower bound for their number of critical values. Relations with the Lusternik-Schnirelmann category are discussed.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条