Height functions on quaternionic Stiefel manifolds
被引:0
|
作者:
Macias-Virgos, Enrique
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Dept Geometry & Topol, Inst Math, Santiago De Compostela 15782, SpainUniv Santiago de Compostela, Dept Geometry & Topol, Inst Math, Santiago De Compostela 15782, Spain
Macias-Virgos, Enrique
[1
]
Oprea, John
论文数: 0引用数: 0
h-index: 0
机构:
Cleveland State Univ, Dept Math, Cleveland, OH 44115 USAUniv Santiago de Compostela, Dept Geometry & Topol, Inst Math, Santiago De Compostela 15782, Spain
Oprea, John
[2
]
Strom, Jeff
论文数: 0引用数: 0
h-index: 0
机构:
Western Michigan Univ, Dept Math, Kalamazoo, MI 49008 USAUniv Santiago de Compostela, Dept Geometry & Topol, Inst Math, Santiago De Compostela 15782, Spain
Strom, Jeff
[3
]
Tanre, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lille 1, Dept Math, F-59655 Villeneuve Dascq, FranceUniv Santiago de Compostela, Dept Geometry & Topol, Inst Math, Santiago De Compostela 15782, Spain
Tanre, Daniel
[4
]
机构:
[1] Univ Santiago de Compostela, Dept Geometry & Topol, Inst Math, Santiago De Compostela 15782, Spain
[2] Cleveland State Univ, Dept Math, Cleveland, OH 44115 USA
[3] Western Michigan Univ, Dept Math, Kalamazoo, MI 49008 USA
[4] Univ Lille 1, Dept Math, F-59655 Villeneuve Dascq, France
In this note, we study height functions on quaternionic Stiefel manifolds and prove that all these height functions areMorse-Bott. Among them, we characterize the Morse functions and give a lower bound for their number of critical values. Relations with the Lusternik-Schnirelmann category are discussed.