Height functions on quaternionic Stiefel manifolds

被引:0
|
作者
Macias-Virgos, Enrique [1 ]
Oprea, John [2 ]
Strom, Jeff [3 ]
Tanre, Daniel [4 ]
机构
[1] Univ Santiago de Compostela, Dept Geometry & Topol, Inst Math, Santiago De Compostela 15782, Spain
[2] Cleveland State Univ, Dept Math, Cleveland, OH 44115 USA
[3] Western Michigan Univ, Dept Math, Kalamazoo, MI 49008 USA
[4] Univ Lille 1, Dept Math, F-59655 Villeneuve Dascq, France
关键词
LUSTERNIK-SCHNIRELMANN CATEGORY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we study height functions on quaternionic Stiefel manifolds and prove that all these height functions areMorse-Bott. Among them, we characterize the Morse functions and give a lower bound for their number of critical values. Relations with the Lusternik-Schnirelmann category are discussed.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [31] Cohomology splittings of Stiefel manifolds
    Kitchloo, N
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 : 457 - 471
  • [32] Generalized quaternionic manifolds
    Pantilie, Radu
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (03) : 633 - 641
  • [33] TOPOLOGY OF QUATERNIONIC MANIFOLDS
    KRAINES, VY
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 71 (03) : 526 - &
  • [34] IMBEDDINGS OF STIEFEL MANIFOLDS INTO GRASSMANNIANS
    JENSEN, G
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A204 - A205
  • [35] Cayley transform on Stiefel manifolds
    Macias-Virgos, Enrique
    Jose Pereira-Saez, Maria
    Tanre, Daniel
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 123 : 53 - 60
  • [36] Hypercomplex structures on Stiefel manifolds
    Boyer, CP
    Galicki, K
    Mann, BM
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1996, 14 (01) : 81 - 105
  • [37] A NOTE ON COMPLEX STIEFEL MANIFOLDS
    HUBBUCK, JR
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1969, 1 (1P1): : 85 - &
  • [38] Quaternionic toric manifolds
    Gentili, Graziano
    Gori, Anna
    Sarfatti, Giulia
    JOURNAL OF SYMPLECTIC GEOMETRY, 2019, 17 (01) : 267 - 300
  • [39] DISTRIBUTIONS OF ORIENTATIONS ON STIEFEL MANIFOLDS
    CHIKUSE, Y
    JOURNAL OF MULTIVARIATE ANALYSIS, 1990, 33 (02) : 247 - 264
  • [40] Stiefel manifolds and coloring the pentagon
    Dover, James
    Oezaydin, Murad
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 121 : 74 - 88