Atomic resolution non-contact atomic force microscopy of clean metal oxide surfaces

被引:70
|
作者
Lauritsen, J. V. [1 ]
Reichling, M. [2 ]
机构
[1] Aarhus Univ, Interdisciplinary Nanosci Ctr, DK-8000 Aarhus C, Denmark
[2] Univ Osnabruck, Fachbereich Phys, D-4500 Osnabruck, Germany
基金
欧洲研究理事会;
关键词
WATER-GAS SHIFT; SCANNING-TUNNELING-MICROSCOPY; ALPHA-AL2O3; 0001; SURFACE; THIN-FILMS; ELECTRONIC-STRUCTURE; TIO2(110) SURFACES; CEO2(111) SURFACES; OXYGEN VACANCIES; DYNAMIC-BEHAVIOR; ALUMINA SURFACES;
D O I
10.1088/0953-8984/22/26/263001
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In the last two decades the atomic force microscope (AFM) has become the premier tool for topographical analysis of surface structures at the nanometre scale. In its ultimately sensitive implementation, namely dynamic scanning force microscopy (SFM) operated in the so-called non-contact mode (NC-AFM), this technique yields genuine atomic resolution and offers a unique tool for real space atomic-scale studies of surfaces, nanoparticles as well as thin films, single atoms and molecules on surfaces irrespective of the substrate being electrically conducting or non-conducting. Recent advances in NC-AFM have paved the way for groundbreaking atomic level insight into insulator surfaces, specifically in the most important field of metal oxides. NC-AFM imaging now strongly contributes to our understanding of the surface structure, chemical composition, defects, polarity and reactivity of metal oxide surfaces and related physical and chemical surface processes. Here we review the latest advancements in the field of NC-AFM applied to the fundamental atomic resolution studies of clean single crystal metal oxide surfaces with special focus on the representative materials Al2O3(0001), TiO2(110), ZnO(1000) and CeO2(111).
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Adaptive semi-empirical model for non-contact atomic force microscopy
    Chen, Xi
    Tong, Jun-Kai
    Hu, Zhi-Xin
    [J]. CHINESE PHYSICS B, 2022, 31 (08)
  • [42] Molecular structure of heavy oil revealed with non-contact atomic force microscopy
    Zhang, Yunlong
    Harper, Michael
    Kushnerick, Douglas
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [43] Theoretical aspects of scanning tunneling microscopy, spectroscopy and atomic force microscopy on clean metal surfaces
    Doyen, G
    Drakova, D
    [J]. PROGRESS IN SURFACE SCIENCE, 1997, 54 (3-4) : 249 - 276
  • [44] Frequency shift and energy dissipation in non-contact atomic-force microscopy
    Ke, SH
    Uda, T
    Terakura, K
    [J]. APPLIED SURFACE SCIENCE, 2000, 157 (04) : 361 - 366
  • [45] Observation of voltage contrast in non-contact resonant mode atomic force microscopy
    Girard, P
    Solal, GC
    Belaidi, S
    [J]. MICROELECTRONIC ENGINEERING, 1996, 31 (1-4) : 215 - 225
  • [46] Imaging in situ cleaved MgO(100) with non-contact atomic force microscopy
    Ashworth, TV
    Pang, CL
    Wincott, PL
    Vaughan, DJ
    Thornton, G
    [J]. APPLIED SURFACE SCIENCE, 2003, 210 (1-2) : 2 - 5
  • [47] Can atomic force microscopy achieve atomic resolution in contact mode?
    Jarvis, MR
    Pérez, R
    Payne, MC
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (07) : 1287 - 1290
  • [48] Acquisition of high-precision images for non-contact atomic force microscopy
    Pishkenari, Hossein Nejat
    Jalili, Nader
    Meghdari, Ali
    [J]. MECHATRONICS, 2006, 16 (10) : 655 - 664
  • [49] Imaging of Defects on Ge(001):H by Non-contact Atomic Force Microscopy
    Such, Bartosz
    Kolmer, Marek
    Godlewski, Szymon
    Lis, Jakub
    Budzioch, Janusz
    Wojtaszek, Mateusz
    Szymonski, Marek
    [J]. IMAGING AND MANIPULATION OF ADSORBATES USING DYNAMIC FORCE MICROSCOPY, 2015, : 111 - 118
  • [50] Modelling atomic scale manipulation with the non-contact atomic force microscope
    Trevethan, T.
    Watkins, M.
    Kantorovich, L. N.
    Shluger, A. L.
    Polesel-Maris, J.
    Gauthier, S.
    [J]. NANOTECHNOLOGY, 2006, 17 (23) : 5866 - 5874