Quantum Hall smectics, sliding symmetry, and the renormalization group

被引:19
|
作者
Lawler, MJ [1 ]
Fradkin, E [1 ]
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.70.165310
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we discuss the implication of the existence of a sliding symmetry, equivalent to the absence of a shear modulus, on the low-energy theory of the quantum hall smectic (QHS) state. We show, through renormalization group calculations, that such a symmetry causes the naive continuum approximation in the direction perpendicular to the stripes to break down through infrared divergent contributions originating from naively irrelevant operators. In particular, we show that the correct fixed point has the form of an array of sliding Luttinger liquids which is free from superficially "irrelevant operators." Similar considerations apply to all theories with sliding symmetries.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [31] Fractional quantum Hall effect and quantum symmetry
    Grensing, G
    PHYSICAL REVIEW B, 2000, 61 (08): : 5483 - 5498
  • [32] Quantum renormalization group and holography
    Sung-Sik Lee
    Journal of High Energy Physics, 2014
  • [33] Quantum renormalization group and holography
    Lee, Sung-Sik
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (01):
  • [34] Renormalization group in quantum mechanics
    Gosselin, P
    Mohrbach, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (36): : 6343 - 6355
  • [35] Hall Viscosity in Quantum Systems with Discrete Symmetry: Point Group and Lattice Anisotropy
    Rao, Pranav
    Bradlyn, Barry
    PHYSICAL REVIEW X, 2020, 10 (02):
  • [36] Renormalization group for quantum walks
    Boettcher, S.
    Falkner, S.
    Portugal, R.
    ELC INTERNATIONAL MEETING ON INFERENCE, COMPUTATION, AND SPIN GLASSES (ICSG2013), 2013, 473
  • [37] RENORMALIZATION GROUP IN QUANTUM ELECTRODYNAMICS
    CHAHINE, C
    TIRAPEGUI, E
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1978, 47 (01): : 81 - 105
  • [38] Renormalization group and quantum information
    Gaite, Jose
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (25): : 7993 - 8006
  • [39] Renormalization group in quantum mechanics
    Polonyi, J
    ANNALS OF PHYSICS, 1996, 252 (02) : 300 - 328
  • [40] Renormalization group study of the sliding Luttinger liquids
    Sierra, G
    Kim, EH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (02): : L37 - L44