Quantum Hall smectics, sliding symmetry, and the renormalization group

被引:19
|
作者
Lawler, MJ [1 ]
Fradkin, E [1 ]
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.70.165310
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we discuss the implication of the existence of a sliding symmetry, equivalent to the absence of a shear modulus, on the low-energy theory of the quantum hall smectic (QHS) state. We show, through renormalization group calculations, that such a symmetry causes the naive continuum approximation in the direction perpendicular to the stripes to break down through infrared divergent contributions originating from naively irrelevant operators. In particular, we show that the correct fixed point has the form of an array of sliding Luttinger liquids which is free from superficially "irrelevant operators." Similar considerations apply to all theories with sliding symmetries.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [41] QUANTUM GROUP AND QUANTUM SYMMETRY
    CHANG, Z
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1995, 262 (3-4): : 137 - 225
  • [42] Renormalization group flows into phases with broken symmetry
    Salmhofer, M
    Honerkamp, C
    Metzner, W
    Lauscher, O
    PROGRESS OF THEORETICAL PHYSICS, 2004, 112 (06): : 943 - 970
  • [43] RENORMALIZATION-GROUP DERIVATION OF THE LOCALIZATION LENGTH EXPONENT IN THE INTEGER QUANTUM HALL-EFFECT
    MORICONI, L
    PHYSICS LETTERS A, 1995, 199 (3-4) : 257 - 266
  • [44] Spontaneous symmetry breaking with Wilson renormalization group
    Bonini, M
    DAttanasio, M
    NUCLEAR PHYSICS B, 1996, 466 (1-2) : 315 - 334
  • [45] SOME SYMMETRY PROPERTIES OF RENORMALIZATION GROUP TRANSFORMATIONS
    JARIC, MV
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (03): : 313 - 313
  • [46] BRS symmetry from renormalization group flow
    Bonini, M.
    D'Attanasio, M.
    Marchesini, G.
    Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics, 346 (1-2):
  • [47] FUNCTIONAL RENORMALIZATION GROUP IN THE BROKEN SYMMETRY PHASE
    Sinner, A.
    Hasselmann, N.
    Kopietz, P.
    PATH INTEGRALS: NEW TRENDS AND PERSPECTIVES, PROCEEDINGS, 2008, : 295 - 298
  • [48] Renormalization group symmetry method and gas dynamics
    Murata, S
    Nozaki, K
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2004, 39 (06) : 963 - 967
  • [49] Symmetry-protected quantum state renormalization
    Huang, Ching-Yu
    Chen, Xie
    Lin, Feng-Li
    PHYSICAL REVIEW B, 2013, 88 (20)
  • [50] ON CONNECTION BETWEEN RENORMALIZATION AND RENORMALIZATION GROUP IN QUANTUM ELECTRODYNAMICS
    ERIKSSON, KE
    NUOVO CIMENTO, 1963, 30 (06): : 1423 - +