Renormalization group in quantum mechanics

被引:14
|
作者
Polonyi, J [1 ]
机构
[1] EOTVOS LORAND UNIV, DEPT ATOM PHYS, H-1088 BUDAPEST, HUNGARY
关键词
D O I
10.1006/aphy.1996.0133
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The running coupling constants are introduced in quantum mechanics and their evolution is described with the help of the renormalization group equation. The harmonic oscillator and the propagation on curved spaces are presented as examples. The Hamiltonian and the Lagrangian scaling relations are obtained. These evolution equations are used to construct low energy effective models. (C) 1996 Academic Press, Inc.
引用
收藏
页码:300 / 328
页数:29
相关论文
共 50 条
  • [1] Renormalization group in quantum mechanics
    Gosselin, P
    Mohrbach, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (36): : 6343 - 6355
  • [2] Renormalization group invariance of quantum mechanics
    Frederico, T
    Delfino, A
    Tomio, L
    PHYSICS LETTERS B, 2000, 481 (01) : 143 - 150
  • [3] Renormalization group at finite temperature in quantum mechanics
    Gosselin, P
    Grosdidier, B
    Mohrbach, H
    PHYSICS LETTERS A, 1999, 256 (2-3) : 125 - 131
  • [4] Renormalization group in quantum mechanics at zero and finite temperature
    Gosselin, P.
    Mohrbach, H.
    Bérard, A.
    2001, American Institute of Physics Inc. (64): : 461291 - 461299
  • [5] Non-perturbative renormalization group analysis in quantum mechanics
    Aoki, KI
    Horikoshi, A
    Taniguchi, M
    Terao, H
    PROGRESS OF THEORETICAL PHYSICS, 2002, 108 (03): : 571 - 590
  • [6] Renormalization-group method for simple operator problems in quantum mechanics
    Egusquiza, IL
    Basagoiti, MAV
    PHYSICAL REVIEW A, 1998, 57 (03): : 1586 - 1589
  • [7] Time-dependent perturbation theory in quantum mechanics and the renormalization group
    Bhattacharjee, J. K.
    Ray, D. S.
    AMERICAN JOURNAL OF PHYSICS, 2016, 84 (06) : 434 - 442
  • [8] Renormalization in conformal quantum mechanics
    Camblong, HE
    Ordóñez, CR
    PHYSICS LETTERS A, 2005, 345 (1-3) : 22 - 30
  • [9] RENORMALIZATION IN QUANTUM-MECHANICS
    GUPTA, KS
    RAJEEV, SG
    PHYSICAL REVIEW D, 1993, 48 (12) : 5940 - 5945
  • [10] Quantum renormalization group
    Nagy, S.
    Polonyi, J.
    Steib, I.
    PHYSICAL REVIEW D, 2016, 93 (02)