Upper Bounds on Number of Steals in Rooted Trees

被引:3
|
作者
Leiserson, Charles E. [1 ]
Schardl, Tao B. [1 ]
Suksompong, Warut [2 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, 32 Vassar St, Cambridge, MA 02139 USA
[2] Stanford Univ, Dept Comp Sci, 353 Serra Mall, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Work stealing; Parallel algorithm; Extremal combinatorics; Binomial coefficient;
D O I
10.1007/s00224-015-9613-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Inspired by applications in parallel computing, we analyze the setting of work stealing in multithreaded computations. We obtain tight upper bounds on the number of steals when the computation can be modeled by rooted trees. In particular, we show that if the computation with n processors starts with one processor having a complete k-ary tree of height h (and the remaining n-1 processors having nothing), the maximum possible number of steals is Sigma(n)(n=1) (k - 1)(i) ((h)(i)),
引用
收藏
页码:223 / 240
页数:18
相关论文
共 50 条
  • [21] Improved Upper Bounds on the Crossing Number
    Dujmovic, Vida
    Kawarabayashi, Ken-ichi
    Mohar, Bojan
    Wood, David R.
    PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SGG'08), 2008, : 375 - 384
  • [22] Upper bounds on Nusselt number at finite Prandtl number
    Choffrut, Antoine
    Nobili, Camilla
    Otto, Felix
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (04) : 3860 - 3880
  • [23] Upper Bounds on the Smallest Positive Eigenvalue of Trees
    Sonu Rani
    Sasmita Barik
    Annals of Combinatorics, 2023, 27 : 19 - 29
  • [24] Upper bounds on maximum likelihood for phylogenetic trees
    Hendy, Michael D.
    Holland, Barbara R.
    BIOINFORMATICS, 2003, 19 : II66 - II72
  • [25] Improved lower bounds for the radio number of trees
    Liu, Daphne Der-Fen
    Saha, Laxman
    Das, Satyabrata
    THEORETICAL COMPUTER SCIENCE, 2021, 851 : 1 - 13
  • [26] Upper Bounds on the Smallest Positive Eigenvalue of Trees
    Rani, Sonu
    Barik, Sasmita
    ANNALS OF COMBINATORICS, 2023, 27 (01) : 19 - 29
  • [27] Lower Bounds on the Number of Leaves in Spanning Trees
    Karpov D.V.
    Journal of Mathematical Sciences, 2018, 232 (1) : 36 - 43
  • [28] BOUNDS ON THE LOCATING ROMAN DOMINATION NUMBER IN TREES
    Rad, Nader Jafari
    Rahbani, Hadi
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (01) : 49 - 62
  • [29] New bounds on the double domination number of trees
    Cabrera-Martinez, Abel
    DISCRETE APPLIED MATHEMATICS, 2022, 315 : 97 - 103
  • [30] UPPER-BOUNDS FOR A RAMSEY THEOREM FOR TREES
    SWANEPOEL, CJ
    PRETORIUS, LM
    GRAPHS AND COMBINATORICS, 1994, 10 (04) : 377 - 382