New bounds on the double domination number of trees

被引:10
|
作者
Cabrera-Martinez, Abel [1 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Av Paisos Catalans 26, Tarragona 43007, Spain
关键词
Double domination number; Domination number; Independent domination number; Trees;
D O I
10.1016/j.dam.2022.03.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a nontrivial connected graph with vertex set V(G). A set D subset of V(G) is a double dominating set of G if vertical bar N[nu]boolean AND D vertical bar >= 2 for every vertex nu is an element of V(G), where N[nu] represents the closed neighbourhood of nu. The double domination number of G, denoted by (gamma x2)(G), is the minimum cardinality among all double dominating sets of G. In this note we show that for any nontrivial tree T, n(T) - gamma(T) + l(T) + s(T) + 1/2 (<= gamma x2(T) <= )n(T) + gamma(T) + l(T)/2, where n(T), l(T), s(T) and y(T) represent the order, the number of leaves, the number of support vertices and the classical domination number of T, respectively. In addition, we show that the established upper bound improves a well-known bound and as a consequence, derives two new results. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:97 / 103
页数:7
相关论文
共 50 条
  • [1] New Bounds on the Double Total Domination Number of Graphs
    A. Cabrera-Martínez
    F. A. Hernández-Mira
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 443 - 453
  • [2] New Bounds on the Double Total Domination Number of Graphs
    Cabrera-Martinez, A.
    Hernandez-Mira, F. A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (01) : 443 - 453
  • [3] BOUNDS ON THE LOCATING ROMAN DOMINATION NUMBER IN TREES
    Rad, Nader Jafari
    Rahbani, Hadi
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (01) : 49 - 62
  • [4] A NOTE ON THE DOUBLE DOMINATION NUMBER IN TREES
    Chellali, Mustapha
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2006, 3 (02) : 147 - 150
  • [5] On the double Roman domination number in trees
    Nazari-Moghaddam, S.
    Chellali, M.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2020, 77 : 256 - 268
  • [6] BOUNDS ON THE LOCATING-DOMINATION NUMBER AND DIFFERENTIATING-TOTAL DOMINATION NUMBER IN TREES
    Rad, Nader Jafari
    Rahbani, Hadi
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (02) : 455 - 462
  • [7] Some bounds on the p-domination number in trees
    Blidia, Mostafa
    Chellali, Mustapha
    Volkmann, Lutz
    DISCRETE MATHEMATICS, 2006, 306 (17) : 2031 - 2037
  • [8] On perfect Roman domination number in trees: complexity and bounds
    Darkooti, Mahsa
    Alhevaz, Abdollah
    Rahimi, Sadegh
    Rahbani, Hadi
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (03) : 712 - 720
  • [9] On perfect Roman domination number in trees: complexity and bounds
    Mahsa Darkooti
    Abdollah Alhevaz
    Sadegh Rahimi
    Hadi Rahbani
    Journal of Combinatorial Optimization, 2019, 38 : 712 - 720
  • [10] BOUNDS ON THE LOCATING-TOTAL DOMINATION NUMBER IN TREES
    Wang, Kun
    Ning, Wenjie
    Lu, Mei
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (01) : 25 - 34