New bounds on the double domination number of trees

被引:10
|
作者
Cabrera-Martinez, Abel [1 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Av Paisos Catalans 26, Tarragona 43007, Spain
关键词
Double domination number; Domination number; Independent domination number; Trees;
D O I
10.1016/j.dam.2022.03.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a nontrivial connected graph with vertex set V(G). A set D subset of V(G) is a double dominating set of G if vertical bar N[nu]boolean AND D vertical bar >= 2 for every vertex nu is an element of V(G), where N[nu] represents the closed neighbourhood of nu. The double domination number of G, denoted by (gamma x2)(G), is the minimum cardinality among all double dominating sets of G. In this note we show that for any nontrivial tree T, n(T) - gamma(T) + l(T) + s(T) + 1/2 (<= gamma x2(T) <= )n(T) + gamma(T) + l(T)/2, where n(T), l(T), s(T) and y(T) represent the order, the number of leaves, the number of support vertices and the classical domination number of T, respectively. In addition, we show that the established upper bound improves a well-known bound and as a consequence, derives two new results. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:97 / 103
页数:7
相关论文
共 50 条
  • [31] Bounds on the double edge-vertex domination number of a tree
    Venkatakrishnan, Y. B.
    Kumar, H. Naresh
    Krishnakumari, B.
    ARS COMBINATORIA, 2019, 146 : 29 - 36
  • [33] On trees with double domination number equal to the 2-outer-independent domination number plus one
    Marcin Krzywkowski
    Chinese Annals of Mathematics, Series B, 2012, 33 : 113 - 126
  • [34] On Trees with Double Domination Number Equal to the 2-Outer-Independent Domination Number Plus One
    Marcin KRZYWKOWSKI
    ChineseAnnalsofMathematics(SeriesB), 2012, 33 (01) : 113 - 126
  • [35] New Probabilistic Upper Bounds on the Domination Number of a Graph
    Rad, Nader Jafari
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (03):
  • [36] New Bounds on the Triple Roman Domination Number of Graphs
    Hajjari, M.
    Ahangar, H. Abdollahzadeh
    Khoeilar, R.
    Shao, Z.
    Sheikholeslami, S. M.
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [37] NEW BOUNDS ON THE SIGNED TOTAL DOMINATION NUMBER OF GRAPHS
    Mochaddam, Seyyed Mehdi Hosseini
    Mojdeh, Doost Ali
    Samadi, Babak
    Volkmann, Lutz
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (02) : 467 - 477
  • [38] Double domination and super domination in trees
    Krishnakumari, B.
    Venkatakrishnan, Y. B.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2016, 8 (04)
  • [39] Bounds on the strong domination number
    Rautenbach, D
    DISCRETE MATHEMATICS, 2000, 215 (1-3) : 201 - 212
  • [40] Bounds on the domination number of a digraph
    Hao, Guoliang
    Qian, Jianguo
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (01) : 64 - 74