New bounds on the double domination number of trees

被引:10
|
作者
Cabrera-Martinez, Abel [1 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Av Paisos Catalans 26, Tarragona 43007, Spain
关键词
Double domination number; Domination number; Independent domination number; Trees;
D O I
10.1016/j.dam.2022.03.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a nontrivial connected graph with vertex set V(G). A set D subset of V(G) is a double dominating set of G if vertical bar N[nu]boolean AND D vertical bar >= 2 for every vertex nu is an element of V(G), where N[nu] represents the closed neighbourhood of nu. The double domination number of G, denoted by (gamma x2)(G), is the minimum cardinality among all double dominating sets of G. In this note we show that for any nontrivial tree T, n(T) - gamma(T) + l(T) + s(T) + 1/2 (<= gamma x2(T) <= )n(T) + gamma(T) + l(T)/2, where n(T), l(T), s(T) and y(T) represent the order, the number of leaves, the number of support vertices and the classical domination number of T, respectively. In addition, we show that the established upper bound improves a well-known bound and as a consequence, derives two new results. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:97 / 103
页数:7
相关论文
共 50 条
  • [41] Bounds on the Global Domination Number
    Desormeaux, Wyatt J.
    Gibson, Philip E.
    Haynes, Teresa W.
    QUAESTIONES MATHEMATICAE, 2015, 38 (04) : 563 - 572
  • [42] Bounds on the exponential domination number
    Bessy, Stephane
    Ochem, Pascal
    Rautenbach, Dieter
    DISCRETE MATHEMATICS, 2017, 340 (03) : 494 - 503
  • [43] BOUNDS ON THE DOMINATION NUMBER OF A GRAPH
    BRIGHAM, RC
    DUTTON, RD
    QUARTERLY JOURNAL OF MATHEMATICS, 1990, 41 (163): : 269 - 275
  • [44] Bounds on the domination number of a digraph
    Guoliang Hao
    Jianguo Qian
    Journal of Combinatorial Optimization, 2018, 35 : 64 - 74
  • [45] Trees with paired-domination number twice their domination number
    Henning, Michael A.
    Vestergaard, Preben Dahl
    UTILITAS MATHEMATICA, 2007, 74 : 187 - 197
  • [46] An improved upper bound on the independent double Roman domination number of trees
    Pour, F. Nahani
    Ahangar, H. Abdollahzadeh
    Chellali, M.
    Sheikholeslami, S. M.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (03) : 206 - 210
  • [47] Domination number, independent domination number and k-independence number in trees
    Cui, Qing
    Zou, Xu
    DISCRETE APPLIED MATHEMATICS, 2025, 366 : 176 - 184
  • [48] DOMINATION NUMBER, INDEPENDENT DOMINATION NUMBER AND 2-INDEPENDENCE NUMBER IN TREES
    Dehgardi, Nasrin
    Sheikholeslami, Seyed Mahmoud
    Valinavaz, Mina
    Aram, Hamideh
    Volkmann, Lutz
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (01) : 39 - 49
  • [49] TREES WITH EQUAL STRONG ROMAN DOMINATION NUMBER AND ROMAN DOMINATION NUMBER
    Chen, Xue-Gang
    Sohn, Moo Young
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (01) : 31 - 44
  • [50] Bounds relating the weakly connected domination number to the total domination number and the matching number
    Hattingh, Johannes H.
    Henning, Michael A.
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (14) : 3086 - 3093