Upper Bounds on Number of Steals in Rooted Trees

被引:3
|
作者
Leiserson, Charles E. [1 ]
Schardl, Tao B. [1 ]
Suksompong, Warut [2 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, 32 Vassar St, Cambridge, MA 02139 USA
[2] Stanford Univ, Dept Comp Sci, 353 Serra Mall, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Work stealing; Parallel algorithm; Extremal combinatorics; Binomial coefficient;
D O I
10.1007/s00224-015-9613-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Inspired by applications in parallel computing, we analyze the setting of work stealing in multithreaded computations. We obtain tight upper bounds on the number of steals when the computation can be modeled by rooted trees. In particular, we show that if the computation with n processors starts with one processor having a complete k-ary tree of height h (and the remaining n-1 processors having nothing), the maximum possible number of steals is Sigma(n)(n=1) (k - 1)(i) ((h)(i)),
引用
收藏
页码:223 / 240
页数:18
相关论文
共 50 条
  • [11] Upper bounds for the Steklov eigenvalues on trees
    He, Zunwu
    Hua, Bobo
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (03)
  • [12] Upper bounds for the Steklov eigenvalues on trees
    Zunwu He
    Bobo Hua
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [13] Bounds of the number of leaves of spanning trees
    Bankevich A.V.
    Karpov D.V.
    Journal of Mathematical Sciences, 2012, 184 (5) : 564 - 572
  • [14] BOUNDS ON THE CONVEX LABEL NUMBER OF TREES
    BERN, M
    KLAWE, M
    WONG, A
    COMBINATORICA, 1987, 7 (03) : 221 - 230
  • [15] Note on the number of rooted complete N-ary trees
    Andres, Stephan Dominique
    ARS COMBINATORIA, 2010, 94 : 465 - 469
  • [16] The expected independent domination number of random directed rooted trees
    Song, JH
    Lee, CW
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2004, 41 (05) : 921 - 931
  • [17] Counting Embeddings of Rooted Trees into Families of Rooted Trees
    Gittenberger, Bernhard
    Golebiewski, Zbigniew
    Larcher, Isabella
    Sulkowska, Malgorzata
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (03):
  • [18] Upper Bounds on the Total Domination Number
    Haynes, Teresa W.
    Henning, Michael A.
    ARS COMBINATORIA, 2009, 91 : 243 - 256
  • [19] Upper bounds on the bondage number of a graph
    Samodivkin, Vladimir
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2018, 6 (01) : 1 - 16
  • [20] Upper bounds of dynamic chromatic number
    Lai, HJ
    Montgomery, B
    Poon, H
    ARS COMBINATORIA, 2003, 68 : 193 - 201