New exact solutions to the high dispersive cubic-quintic nonlinear Schrodinger equation

被引:44
|
作者
Xie, Yingying [1 ]
Yang, Zhaoyu [2 ]
Li, Lingfei [1 ]
机构
[1] Sichuan Normal Univ, Sch Math & Software Sci, Chengdu 610066, Sichuan, Peoples R China
[2] Qin Nong Bank, Changan Rural Credit Cooperat, Xian 710100, Shanxi, Peoples R China
关键词
Generalized nonlinear Schrodinger equation; Complete discrimination system; Non-Kerr terms; Soliton; Optical fibers; SOLITARY WAVE SOLUTIONS; OPTICAL SOLITONS; TANH-FUNCTION; POWER-LAW; TRANSFORMATION; SYSTEMS;
D O I
10.1016/j.physleta.2018.06.023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The complete discrimination system method is employed to find exact solutions for a dispersive cubic-quintic nonlinear Schrodinger equation with third order and fourth order time derivatives. As a result, we derive a range of solutions which include triangular function solutions, kink solitary wave solutions, dark solitary wave solutions, Jacobian elliptic function solutions, rational function solutions and implicit analytical solutions. Numerical simulations are presented to visualize the mechanism of Eq. (1) by selecting appropriate parameters of the solutions. The comparison between our results and other's works are also given. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:2506 / 2514
页数:9
相关论文
共 50 条
  • [21] SOLITON SOLUTIONS OF THE CUBIC-QUINTIC NONLINEAR SCHRODINGER EQUATION WITH VARIABLE COEFFICIENTS
    Triki, Houria
    Wazwaz, Abdul-Majid
    [J]. ROMANIAN JOURNAL OF PHYSICS, 2016, 61 (3-4): : 360 - 366
  • [22] Traveling-wave solutions of the cubic-quintic nonlinear Schrodinger equation
    Schurmann, HW
    [J]. PHYSICAL REVIEW E, 1996, 54 (04) : 4312 - 4320
  • [23] Optical solitary wave solutions for the fourth-order dispersive cubic-quintic nonlinear Schrodinger equation
    Dai, Chao-Qing
    Chen, Jun-Lang
    Zhang, Jie-Fang
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (15): : 2657 - 2668
  • [24] Exact Solutions of the Two-Dimensional Cubic-Quintic Nonlinear Schrodinger Equation with Spatially Modulated Nonlinearities
    Song Xiang
    Li Hua-Mei
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2013, 59 (03) : 290 - 294
  • [25] Eigenvalue cutoff in the cubic-quintic nonlinear Schrodinger equation
    Prytula, Vladyslav
    Vekslerchik, Vadym
    Perez-Garcia, Victor M.
    [J]. PHYSICAL REVIEW E, 2008, 78 (02):
  • [26] Pseudorecurrence and chaos of cubic-quintic nonlinear Schrodinger equation
    Zhou, CT
    Lai, CH
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1996, 7 (06): : 775 - 786
  • [27] Solitons and Scattering for the Cubic-Quintic Nonlinear Schrodinger Equation on
    Killip, Rowan
    Oh, Tadahiro
    Pocovnicu, Oana
    Visan, Monica
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (01) : 469 - 548
  • [28] The analytic solutions of Schrodinger equation with Cubic-Quintic nonlinearities
    Wang, Chun-Yan
    [J]. RESULTS IN PHYSICS, 2018, 10 : 150 - 154
  • [29] Jacobian elliptic function solutions of the discrete cubic-quintic nonlinear Schrodinger equation
    Tiofack, G. C. Latchio
    Mohamadou, Alidou
    Kofane, T. C.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (23) : 6133 - 6145
  • [30] Criteria for existence and stability of soliton solutions of the cubic-quintic nonlinear Schrodinger equation
    Schürmann, HW
    Serov, VS
    [J]. PHYSICAL REVIEW E, 2000, 62 (02): : 2821 - 2826