A Novel Fault Diagnosis Method for Rotating Machinery Based on a Convolutional Neural Network

被引:168
|
作者
Guo, Sheng [1 ]
Yang, Tao [1 ]
Gao, Wei [1 ]
Zhang, Chen [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Hubei, Peoples R China
关键词
convolutional neural network; fault diagnosis; vibration; wavelet transform;
D O I
10.3390/s18051429
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Fault diagnosis is critical to ensure the safety and reliable operation of rotating machinery. Most methods used in fault diagnosis of rotating machinery extract a few feature values from vibration signals for fault diagnosis, which is a dimensionality reduction from the original signal and may omit some important fault messages in the original signal. Thus, a novel diagnosis method is proposed involving the use of a convolutional neural network (CNN) to directly classify the continuous wavelet transform scalogram (CWTS), which is a time-frequency domain transform of the original signal and can contain most of the information of the vibration signals. In this method, CWTS is formed by discomposing vibration signals of rotating machinery in different scales using wavelet transform. Then the CNN is trained to diagnose faults, with CWTS as the input. A series of experiments is conducted on the rotor experiment platform using this method. The results indicate that the proposed method can diagnose the faults accurately. To verify the universality of this method, the trained CNN was also used to perform fault diagnosis for another piece of rotor equipment, and a good result was achieved.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Rotating machinery fault diagnosis based on a novel lightweight convolutional neural network
    Yan, Jing
    Liu, Tingliang
    Ye, Xinyu
    Jing, Qianzhen
    Dai, Yuannan
    [J]. PLOS ONE, 2021, 16 (08):
  • [2] Intelligent fault diagnosis of rotating machinery based on a novel lightweight convolutional neural network
    Lu, Yuqi
    Mi, Jinhua
    Liang, He
    Cheng, Yuhua
    Bai, Libing
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2022, 236 (04) : 554 - 569
  • [3] Fault Diagnosis of Rotating Machinery Based on Evolutionary Convolutional Neural Network
    Bai, Yihao
    Cheng, Weidong
    Wen, Weigang
    Liu, Yang
    [J]. SHOCK AND VIBRATION, 2022, 2022
  • [4] A novel method based on nonlinear auto-regression neural network and convolutional neural network for imbalanced fault diagnosis of rotating machinery
    Zhou, Quan
    Li, Yibing
    Tian, Yu
    Jiang, Li
    [J]. MEASUREMENT, 2020, 161 (161)
  • [5] A Lighted Deep Convolutional Neural Network Based Fault Diagnosis of Rotating Machinery
    Ma, Shangjun
    Cai, Wei
    Liu, Wenkai
    Shang, Zhaowei
    Liu, Geng
    [J]. SENSORS, 2019, 19 (10)
  • [6] Application of adaptive convolutional neural network in rotating machinery fault diagnosis
    Li, Tao
    Duan, Lixiang
    Zhang, Dongning
    Zhao, Shangxin
    Huang, Hui
    Bi, Caixia
    Yuan, Zhuang
    [J]. Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (16): : 275 - 282
  • [7] Convolutional Neural Network Based Fault Detection for Rotating Machinery
    Janssens, Olivier
    Slavkovikj, Viktor
    Vervisch, Bram
    Stockman, Kurt
    Loccufier, Mia
    Verstockt, Steven
    Van de Walle, Rik
    Van Hoecke, Sofie
    [J]. JOURNAL OF SOUND AND VIBRATION, 2016, 377 : 331 - 345
  • [8] Fault Diagnosis of Rotating Machinery Based on Convolutional Neural Network and Singular Value Decomposition
    Liu, Dong
    Lai, Xu
    Xiao, Zhihuai
    Hu, Xiao
    Zhang, Pei
    [J]. SHOCK AND VIBRATION, 2020, 2020
  • [9] Rotating machinery fault diagnosis based on transfer learning and an improved convolutional neural network
    Jiang, Li
    Zheng, Chunpu
    Li, Yibing
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (10)
  • [10] Rotating machinery fault diagnosis based on convolutional neural network and infrared thermal imaging
    Yongbo LI
    Xiaoqiang DU
    Fangyi WAN
    Xianzhi WANG
    Huangchao YU
    [J]. Chinese Journal of Aeronautics . , 2020, (02) - 438