A Novel Fault Diagnosis Method for Rotating Machinery Based on a Convolutional Neural Network

被引:171
|
作者
Guo, Sheng [1 ]
Yang, Tao [1 ]
Gao, Wei [1 ]
Zhang, Chen [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Hubei, Peoples R China
关键词
convolutional neural network; fault diagnosis; vibration; wavelet transform;
D O I
10.3390/s18051429
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Fault diagnosis is critical to ensure the safety and reliable operation of rotating machinery. Most methods used in fault diagnosis of rotating machinery extract a few feature values from vibration signals for fault diagnosis, which is a dimensionality reduction from the original signal and may omit some important fault messages in the original signal. Thus, a novel diagnosis method is proposed involving the use of a convolutional neural network (CNN) to directly classify the continuous wavelet transform scalogram (CWTS), which is a time-frequency domain transform of the original signal and can contain most of the information of the vibration signals. In this method, CWTS is formed by discomposing vibration signals of rotating machinery in different scales using wavelet transform. Then the CNN is trained to diagnose faults, with CWTS as the input. A series of experiments is conducted on the rotor experiment platform using this method. The results indicate that the proposed method can diagnose the faults accurately. To verify the universality of this method, the trained CNN was also used to perform fault diagnosis for another piece of rotor equipment, and a good result was achieved.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network
    Wu, Chunzhi
    Jiang, Pengcheng
    Ding, Chuang
    Feng, Fuzhou
    Chen, Tang
    COMPUTERS IN INDUSTRY, 2019, 108 : 53 - 61
  • [22] Data Preprocessing Techniques in Convolutional Neural Network Based on Fault Diagnosis Towards Rotating Machinery
    Tang, Shengnan
    Yuan, Shouqi
    Zhu, Yong
    IEEE ACCESS, 2020, 8 : 149487 - 149496
  • [23] Fault diagnosis and identification of rotating machinery based on one-dimensional convolutional neural network
    Yu, Feifei
    Chen, Guoyan
    Dua, Canyi
    Liu, Liwu
    Xing, Xiaoting
    Yang, Xiaoqing
    JOURNAL OF VIBROENGINEERING, 2024, 26 (04) : 793 - 807
  • [24] A novel deep neural network based on an unsupervised feature learning method for rotating machinery fault diagnosis
    Cheng, Chun
    Liu, Wenyi
    Wang, Weiping
    Pecht, Michael
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (09)
  • [25] Convolutional Neural Network-Based Bayesian Gaussian Mixture for Intelligent Fault Diagnosis of Rotating Machinery
    Li, Guoqiang
    Wu, Jun
    Deng, Chao
    Chen, Zuoyi
    Shao, Xinyu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [26] The dual-channel convolutional neural network for rotating machinery fault diagnosis based on HHT and TMSST
    Song, Yadi
    Wang, Haibo
    Zhao, Chuanzhe
    Wang, Ronglin
    Li, Pengtao
    Engineering Research Express, 2024, 6 (04):
  • [27] Ensemble Dilated Convolutional Neural Network and Its Application in Rotating Machinery Fault Diagnosis
    Cai, Yuxiang
    Wang, Zhenya
    Yao, Ligang
    Lin, Tangxin
    Zhang, Jun
    Computational Intelligence and Neuroscience, 2022, 2022
  • [28] Ensemble Dilated Convolutional Neural Network and Its Application in Rotating Machinery Fault Diagnosis
    Cai, Yuxiang
    Wang, Zhenya
    Yao, Ligang
    Lin, Tangxin
    Zhang, Jun
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [29] Fault diagnosis of rotating machinery based on wavelet transforms and Neural Network
    Roztocil, Jan
    Novak, Martin
    2010 INTERNATIONAL CONFERENCE ON APPLIED ELECTRONICS, 2010, : 293 - 298
  • [30] Research on Fault Diagnosis of Rotating Machinery Based on Quantum Neural Network
    Yun, Wang
    PROCEEDINGS OF 2018 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, ELECTRONICS AND ELECTRICAL ENGINEERING (AUTEEE), 2018, : 306 - 310