A Novel Fault Diagnosis Method for Rotating Machinery Based on a Convolutional Neural Network

被引:171
|
作者
Guo, Sheng [1 ]
Yang, Tao [1 ]
Gao, Wei [1 ]
Zhang, Chen [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Hubei, Peoples R China
关键词
convolutional neural network; fault diagnosis; vibration; wavelet transform;
D O I
10.3390/s18051429
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Fault diagnosis is critical to ensure the safety and reliable operation of rotating machinery. Most methods used in fault diagnosis of rotating machinery extract a few feature values from vibration signals for fault diagnosis, which is a dimensionality reduction from the original signal and may omit some important fault messages in the original signal. Thus, a novel diagnosis method is proposed involving the use of a convolutional neural network (CNN) to directly classify the continuous wavelet transform scalogram (CWTS), which is a time-frequency domain transform of the original signal and can contain most of the information of the vibration signals. In this method, CWTS is formed by discomposing vibration signals of rotating machinery in different scales using wavelet transform. Then the CNN is trained to diagnose faults, with CWTS as the input. A series of experiments is conducted on the rotor experiment platform using this method. The results indicate that the proposed method can diagnose the faults accurately. To verify the universality of this method, the trained CNN was also used to perform fault diagnosis for another piece of rotor equipment, and a good result was achieved.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Rotating machinery fault diagnosis based on wavelet fuzzy neural network
    Peng, B
    Liu, ZQ
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS II, 2005, 187 : 527 - 534
  • [32] INTELLIGENT FAULT DIAGNOSIS OF ROTATING MACHINERY BASED ON DEEP NEURAL NETWORK
    Zhang, Xiuchun
    Xia, Hong
    Liu, Yongkang
    Zhu, Shaomin
    Jiang, Yingying
    Zhang, Jiyu
    Liu, Jie
    Yin, Wenzhe
    PROCEEDINGS OF 2024 31ST INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, VOL 1, ICONE31 2024, 2024,
  • [33] Study on Fault Diagnosis of Rotating Machinery Based on Wavelet Neural Network
    Xu Yangwen
    ITCS: 2009 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND COMPUTER SCIENCE, PROCEEDINGS, VOL 2, PROCEEDINGS, 2009, : 221 - 224
  • [34] A Novel Method for Fault Diagnosis of Rotating Machinery
    Tang, Meng
    Liao, Yaxuan
    Luo, Fan
    Li, Xiangshun
    ENTROPY, 2022, 24 (05)
  • [35] An ensemble fault diagnosis method for rotating machinery based on wavelet packet transform and convolutional neural networks
    Jiang, Li
    Wu, Lin
    Tian, Yu
    Li, Yibing
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2022, 236 (24) : 11600 - 11612
  • [36] Fault Diagnosis of Rotating Machinery Based on Combination of Deep Belief Network and One-dimensional Convolutional Neural Network
    Li, Yibing
    Zou, Li
    Jiang, Li
    Zhou, Xiangyu
    IEEE ACCESS, 2019, 7 : 165710 - 165723
  • [37] Research on fault component extraction and fault type identification of rotating machinery based on MDSM and a novel convolutional neural network
    Liu, Zhilei
    Ning, Dayong
    Zhou, Cheng
    Geng, Jianhua
    Liang, Gangda
    Zhang, Fengrui
    Hou, Jiaoyi
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [38] Multimodal convolutional neural network model with information fusion for intelligent fault diagnosis in rotating machinery
    Ma, Yiming
    Wen, Guojun
    Cheng, Siyi
    He, Xin
    Mei, Shuang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (12)
  • [39] A fault diagnosis scheme for rotating machinery using hierarchical symbolic analysis and convolutional neural network
    Yang, Yuantao
    Zheng, Huailiang
    Li, Yongbo
    Xu, Minqiang
    Chen, Yushu
    ISA TRANSACTIONS, 2019, 91 : 235 - 252
  • [40] Rotating machinery fault diagnosis using dimension expansion and AntisymNet lightweight convolutional neural network
    Luo, Zhiyong
    Peng, Yueyue
    Dong, Xin
    Qian, Hao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (11)