Fault Diagnosis of Rotating Machinery Based on Convolutional Neural Network and Singular Value Decomposition

被引:5
|
作者
Liu, Dong [1 ]
Lai, Xu [1 ]
Xiao, Zhihuai [2 ]
Hu, Xiao [2 ]
Zhang, Pei [3 ]
机构
[1] Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Key Lab Hydraul Machinery Transients, Minist Educ, Wuhan 430072, Peoples R China
[3] Hunan Wuling Power Technol Co, Changsha 410000, Peoples R China
基金
中国国家自然科学基金;
关键词
EMPIRICAL MODE DECOMPOSITION; SPECTRUM;
D O I
10.1155/2020/6542913
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Vibration signal and shaft orbit are important features that reflect the operating state of rotating machinery. Fault diagnosis and feature extraction are critical to ensure the safety and reliable operation of rotating machinery. A novel method of fault diagnosis based on convolutional neural network (CNN), discrete wavelet transform (DWT), and singular value decomposition (SVD) is proposed in this paper. CNN is used to extract features of shaft orbit images, DWT is used to transform the denoised swing signal of rotating machinery, and the wavelet decomposition coefficients of each branch of the signal are obtained by the transformation. The SVD input matrix is formed after single branch reconstruction of the different branch coefficients, and the singular value is extracted to obtain the feature vector. The features extracted from both methods are combined and then classified by support vector machines (SVMs). The comparison results show that this hybrid method has a higher recognition rate than other methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Fault Diagnosis for Rotating Machinery Based on Convolutional Neural Network and Empirical Mode Decomposition
    Xie, Yuan
    Zhang, Tao
    [J]. SHOCK AND VIBRATION, 2017, 2017
  • [2] Fault Diagnosis of Rotating Machinery Based on Evolutionary Convolutional Neural Network
    Bai, Yihao
    Cheng, Weidong
    Wen, Weigang
    Liu, Yang
    [J]. SHOCK AND VIBRATION, 2022, 2022
  • [3] Rotating machinery fault diagnosis based on a novel lightweight convolutional neural network
    Yan, Jing
    Liu, Tingliang
    Ye, Xinyu
    Jing, Qianzhen
    Dai, Yuannan
    [J]. PLOS ONE, 2021, 16 (08):
  • [4] A Novel Fault Diagnosis Method for Rotating Machinery Based on a Convolutional Neural Network
    Guo, Sheng
    Yang, Tao
    Gao, Wei
    Zhang, Chen
    [J]. SENSORS, 2018, 18 (05)
  • [5] A Lighted Deep Convolutional Neural Network Based Fault Diagnosis of Rotating Machinery
    Ma, Shangjun
    Cai, Wei
    Liu, Wenkai
    Shang, Zhaowei
    Liu, Geng
    [J]. SENSORS, 2019, 19 (10)
  • [6] Convolutional Neural Network Based Fault Detection for Rotating Machinery
    Janssens, Olivier
    Slavkovikj, Viktor
    Vervisch, Bram
    Stockman, Kurt
    Loccufier, Mia
    Verstockt, Steven
    Van de Walle, Rik
    Van Hoecke, Sofie
    [J]. JOURNAL OF SOUND AND VIBRATION, 2016, 377 : 331 - 345
  • [7] Rotating machinery fault diagnosis based on transfer learning and an improved convolutional neural network
    Jiang, Li
    Zheng, Chunpu
    Li, Yibing
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (10)
  • [8] Rotating machinery fault diagnosis based on convolutional neural network and infrared thermal imaging
    Yongbo LI
    Xiaoqiang DU
    Fangyi WAN
    Xianzhi WANG
    Huangchao YU
    [J]. Chinese Journal of Aeronautics . , 2020, (02) - 438
  • [9] Intelligent fault diagnosis of rotating machinery based on a novel lightweight convolutional neural network
    Lu, Yuqi
    Mi, Jinhua
    Liang, He
    Cheng, Yuhua
    Bai, Libing
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2022, 236 (04) : 554 - 569
  • [10] Rotating machinery fault diagnosis based on convolutional neural network and infrared thermal imaging
    Yongbo LI
    Xiaoqiang DU
    Fangyi WAN
    Xianzhi WANG
    Huangchao YU
    [J]. Chinese Journal of Aeronautics, 2020, 33 (02) : 427 - 438