A Bias Trick for Centered Robust Principal Component Analysis (Student Abstract)

被引:0
|
作者
He, Baokun [1 ]
Wan, Guihong [1 ]
Schweitzer, Haim [1 ]
机构
[1] Univ Texas Dallas, 800 W Campbell Rd, Richardson, TX 75083 USA
关键词
PCA;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Outlier based Robust Principal Component Analysis (RPCA) requires centering of the non-outliers. We show a "bias trick" that automatically centers these non-outliers. Using this bias trick we obtain the first RPCA algorithm that is optimal with respect to centering.
引用
收藏
页码:13807 / 13808
页数:2
相关论文
共 50 条
  • [1] Abstract principal component analysis
    Li TianJiang
    Du Qiang
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (12) : 2783 - 2798
  • [2] Abstract principal component analysis
    LI TianJiang
    DU Qiang
    Science China(Mathematics), 2013, 56 (12) : 2783 - 2798
  • [3] Abstract principal component analysis
    TianJiang Li
    Qiang Du
    Science China Mathematics, 2013, 56 : 2783 - 2798
  • [4] Robust principal component analysis
    Partridge, Matthew
    Jabri, Marwan
    Neural Networks for Signal Processing - Proceedings of the IEEE Workshop, 2000, 1 : 289 - 298
  • [5] A ROBUST PRINCIPAL COMPONENT ANALYSIS
    RUYMGAART, FH
    JOURNAL OF MULTIVARIATE ANALYSIS, 1981, 11 (04) : 485 - 497
  • [6] Robust Principal Component Analysis?
    Candes, Emmanuel J.
    Li, Xiaodong
    Ma, Yi
    Wright, John
    JOURNAL OF THE ACM, 2011, 58 (03)
  • [7] A robust principal component analysis
    Ibazizen, M
    Dauxois, J
    STATISTICS, 2003, 37 (01) : 73 - 83
  • [8] Robust principal component analysis
    Partridge, M
    Jabri, M
    NEURAL NETWORKS FOR SIGNAL PROCESSING X, VOLS 1 AND 2, PROCEEDINGS, 2000, : 289 - 298
  • [9] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    Science China(Information Sciences), 2014, 57 (09) : 175 - 188
  • [10] Robust Multilinear Principal Component Analysis
    Inoue, Kohei
    Hara, Kenji
    Urahama, Kiichi
    2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 591 - 597