Abstract principal component analysis

被引:0
|
作者
TianJiang Li
Qiang Du
机构
[1] The Pennsylvania State University,Department of Mathematics
[2] CGG,Lab of Applied Mathematics
[3] Beijing Computational Science Research Center,undefined
来源
Science China Mathematics | 2013年 / 56卷
关键词
abstract principal component analysis; pattern recognition; mode extraction; reduced order modeling; traveling waves; 65D99; 62H30; 68T10; 65M99;
D O I
暂无
中图分类号
学科分类号
摘要
We present the basic idea of abstract principal component analysis (APCA) as a general approach that extends various popular data analysis techniques such as PCA and GPCA. We describe the mathematical theory behind APCA and focus on a particular application to mode extractions from a data set of mixed temporal and spatial signals. For illustration, algorithmic implementation details and numerical examples are presented for the extraction of a number of basic types of wave modes including, in particular, dynamic modes involving spatial shifts.
引用
收藏
页码:2783 / 2798
页数:15
相关论文
共 50 条
  • [1] Abstract principal component analysis
    Li TianJiang
    Du Qiang
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (12) : 2783 - 2798
  • [2] Abstract principal component analysis
    LI TianJiang
    DU Qiang
    Science China(Mathematics), 2013, 56 (12) : 2783 - 2798
  • [3] Deriving Numerical Abstract Domains via Principal Component Analysis
    Amato, Cianluca
    Parton, Maurizio
    Scozzari, Francesca
    STATIC ANALYSIS, 2010, 6337 : 134 - 150
  • [4] A Bias Trick for Centered Robust Principal Component Analysis (Student Abstract)
    He, Baokun
    Wan, Guihong
    Schweitzer, Haim
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 13807 - 13808
  • [5] Principal Component Projection Without Principal Component Analysis
    Frostig, Roy
    Musco, Cameron
    Musco, Christopher
    Sidford, Aaron
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [6] Principal component analysis
    Michael Greenacre
    Patrick J. F. Groenen
    Trevor Hastie
    Alfonso Iodice D’Enza
    Angelos Markos
    Elena Tuzhilina
    Nature Reviews Methods Primers, 2
  • [7] Principal component analysis
    Greenacre, Michael
    Groenen, Patrick J. F.
    Hastie, Trevor
    D'Enza, Alfonso Lodice
    Markos, Angelos
    Tuzhilina, Elena
    NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [8] Principal component analysis
    Bro, Rasmus
    Smilde, Age K.
    ANALYTICAL METHODS, 2014, 6 (09) : 2812 - 2831
  • [9] Principal component analysis
    Jake Lever
    Martin Krzywinski
    Naomi Altman
    Nature Methods, 2017, 14 : 641 - 642
  • [10] Principal component analysis
    School of Behavioral and Brain Sciences, University of Texas at Dallas, MS: GR4.1, Richardson, TX 75080-3021, United States
    不详
    Wiley Interdiscip. Rev. Comput. Stat., 4 (433-459):