Abstract principal component analysis

被引:0
|
作者
TianJiang Li
Qiang Du
机构
[1] The Pennsylvania State University,Department of Mathematics
[2] CGG,Lab of Applied Mathematics
[3] Beijing Computational Science Research Center,undefined
来源
Science China Mathematics | 2013年 / 56卷
关键词
abstract principal component analysis; pattern recognition; mode extraction; reduced order modeling; traveling waves; 65D99; 62H30; 68T10; 65M99;
D O I
暂无
中图分类号
学科分类号
摘要
We present the basic idea of abstract principal component analysis (APCA) as a general approach that extends various popular data analysis techniques such as PCA and GPCA. We describe the mathematical theory behind APCA and focus on a particular application to mode extractions from a data set of mixed temporal and spatial signals. For illustration, algorithmic implementation details and numerical examples are presented for the extraction of a number of basic types of wave modes including, in particular, dynamic modes involving spatial shifts.
引用
收藏
页码:2783 / 2798
页数:15
相关论文
共 50 条
  • [31] Decomposable Principal Component Analysis
    Wiesel, Ami
    Hero, Alfred O.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (11) : 4369 - 4377
  • [32] Sparse principal component analysis
    Zou, Hui
    Hastie, Trevor
    Tibshirani, Robert
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (02) : 265 - 286
  • [33] Progressive principal component analysis
    Liu, J
    Chen, SC
    Zhou, ZH
    ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 1, 2004, 3173 : 768 - 773
  • [34] Adaptive Principal Component Analysis
    Li, Xiangyu
    Wang, Hua
    PROCEEDINGS OF THE 2022 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2022, : 486 - 494
  • [35] Ensemble Principal Component Analysis
    Dorabiala, Olga
    Aravkin, Aleksandr Y.
    Kutz, J. Nathan
    IEEE ACCESS, 2024, 12 : 6663 - 6671
  • [36] A Generalization of Principal Component Analysis
    Battaglino, Samuele
    Koyuncu, Erdem
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3607 - 3611
  • [37] Euler Principal Component Analysis
    Stephan Liwicki
    Georgios Tzimiropoulos
    Stefanos Zafeiriou
    Maja Pantic
    International Journal of Computer Vision, 2013, 101 : 498 - 518
  • [38] SUBJECTIVE PRINCIPAL COMPONENT ANALYSIS
    KORHONEN, PJ
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1984, 2 (03) : 243 - 255
  • [39] What is principal component analysis?
    Ringner, Markus
    NATURE BIOTECHNOLOGY, 2008, 26 (03) : 303 - 304
  • [40] Parameterized principal component analysis
    Gupta, Ajay
    Barbu, Adrian
    PATTERN RECOGNITION, 2018, 78 : 215 - 227