Robust principal component analysis

被引:0
|
作者
Partridge, M [1 ]
Jabri, M [1 ]
机构
[1] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Principal component analysis (PCA) is a technique used to reduce the dimensionality of data. In particular, it may be used to reduce the noise component of a signal. However, traditional PCA techniques may themselves be sensitive to noise. Some robust techniques have been developed, but these tend not to work so well in high dimensional spaces. This paper discusses the robustness properties of a recent PCA algorithm, SPCA(1). It shows theoretically and experimentally that this algorithm is less sensitive to the presence of outliers.
引用
收藏
页码:289 / 298
页数:10
相关论文
共 50 条
  • [1] A ROBUST PRINCIPAL COMPONENT ANALYSIS
    RUYMGAART, FH
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1981, 11 (04) : 485 - 497
  • [2] Robust Principal Component Analysis?
    Candes, Emmanuel J.
    Li, Xiaodong
    Ma, Yi
    Wright, John
    [J]. JOURNAL OF THE ACM, 2011, 58 (03)
  • [3] A robust principal component analysis
    Ibazizen, M
    Dauxois, J
    [J]. STATISTICS, 2003, 37 (01) : 73 - 83
  • [4] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    [J]. Science China(Information Sciences), 2014, 57 (09) : 175 - 188
  • [5] Robust Multilinear Principal Component Analysis
    Inoue, Kohei
    Hara, Kenji
    Urahama, Kiichi
    [J]. 2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 591 - 597
  • [6] Robust Stochastic Principal Component Analysis
    Goes, John
    Zhang, Teng
    Arora, Raman
    Lerman, Gilad
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 33, 2014, 33 : 266 - 274
  • [7] Robust Kernel Principal Component Analysis
    Huang, Su-Yun
    Yeh, Yi-Ren
    Eguchi, Shinto
    [J]. NEURAL COMPUTATION, 2009, 21 (11) : 3179 - 3213
  • [8] Inductive Robust Principal Component Analysis
    Bao, Bing-Kun
    Liu, Guangcan
    Xu, Changsheng
    Yan, Shuicheng
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (08) : 3794 - 3800
  • [9] Robust Principal Component Analysis on Graphs
    Shahid, Nauman
    Kalofolias, Vassilis
    Bresson, Xavier
    Bronsteint, Michael
    Vandergheynst, Pierre
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 2812 - 2820
  • [10] A review on robust principal component analysis
    Lee, Eunju
    Park, Mingyu
    Kim, Choongrak
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2022, 35 (02) : 327 - 333