A Bias Trick for Centered Robust Principal Component Analysis (Student Abstract)

被引:0
|
作者
He, Baokun [1 ]
Wan, Guihong [1 ]
Schweitzer, Haim [1 ]
机构
[1] Univ Texas Dallas, 800 W Campbell Rd, Richardson, TX 75083 USA
关键词
PCA;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Outlier based Robust Principal Component Analysis (RPCA) requires centering of the non-outliers. We show a "bias trick" that automatically centers these non-outliers. Using this bias trick we obtain the first RPCA algorithm that is optimal with respect to centering.
引用
收藏
页码:13807 / 13808
页数:2
相关论文
共 50 条
  • [21] Double robust principal component analysis
    Wang, Qianqian
    Gao, QuanXue
    Sun, Gan
    Ding, Chris
    NEUROCOMPUTING, 2020, 391 : 119 - 128
  • [22] Robust sparse principal component analysis
    Qian Zhao
    DeYu Meng
    ZongBen Xu
    Science China Information Sciences, 2014, 57 : 1 - 14
  • [23] Robust algorithms for principal component analysis
    Yang, TN
    Wang, SD
    PATTERN RECOGNITION LETTERS, 1999, 20 (09) : 927 - 933
  • [24] Double robust principal component analysis
    Wang Q.
    Gao Q.
    Sun G.
    Ding C.
    Neurocomputing, 2022, 391 : 119 - 128
  • [25] Flexible robust principal component analysis
    He, Zinan
    Wu, Jigang
    Han, Na
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2020, 11 (03) : 603 - 613
  • [26] Adaptive robust principal component analysis
    Liu, Yang
    Gao, Xinbo
    Gao, Quanxue
    Shao, Ling
    Han, Jungong
    NEURAL NETWORKS, 2019, 119 : 85 - 92
  • [27] Flexible robust principal component analysis
    Zinan He
    Jigang Wu
    Na Han
    International Journal of Machine Learning and Cybernetics, 2020, 11 : 603 - 613
  • [28] Incomplete robust principal component analysis
    Shi, Jiarong
    Zheng, Xiuyun
    Yong, Longquan
    ICIC Express Letters, Part B: Applications, 2014, 5 (06): : 1531 - 1538
  • [29] Multilevel Approximate Robust Principal Component Analysis
    Hovhannisyan, Vahan
    Panagakis, Yannis
    Zafeiriou, Stefanos
    Parpas, Panos
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 536 - 544
  • [30] A note on robust kernel principal component analysis
    Deng, Xinwei
    Yuan, Ming
    Sudjianto, Agus
    PREDICTION AND DISCOVERY, 2007, 443 : 21 - +