ON SYMMETRY GROUPS AND CONSERVATION LAWS FOR SPACE-TIME FRACTIONAL INHOMOGENEOUS NONLINEAR DIFFUSION EQUATION

被引:0
|
作者
Feng, Wei [1 ]
机构
[1] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310023, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
space-time fractional inhomogeneous nonlinear diffusion equation; symmetry groups; conservation laws; exact solutions; LIE-BACKLUND SYMMETRIES; PARTIAL-DIFFERENTIAL-EQUATIONS; POTENTIAL SYMMETRIES; INVARIANT SOLUTIONS; CLASSIFICATION; CONSTRUCTION; ORDER;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider a class of space-time fractional inhomogeneous nonlinear diffusion equations with Riemann-Liouville fractional derivative. Symmetry group method is applied to derive explicit solutions of the governing equation from the reduced fractional ordinary differential equations. Conservation laws admitted by the space-time fractional inhomogeneous nonlinear diffusion equations are obtained with the aid of the nonlinear self-adjointness method.
引用
收藏
页码:375 / 392
页数:18
相关论文
共 50 条
  • [41] Inverse source problem for a space-time fractional diffusion equation
    Mohamed BenSaleh
    Hassine Maatoug
    Ricerche di Matematica, 2024, 73 : 681 - 713
  • [42] A fast algorithm for solving the space-time fractional diffusion equation
    Duo, Siwei
    Ju, Lili
    Zhang, Yanzhi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (06) : 1929 - 1941
  • [43] Inverse source problem for a space-time fractional diffusion equation
    BenSaleh, Mohamed
    Maatoug, Hassine
    RICERCHE DI MATEMATICA, 2024, 73 (02) : 681 - 713
  • [44] Finite element method for space-time fractional diffusion equation
    Feng, L. B.
    Zhuang, P.
    Liu, F.
    Turner, I.
    Gu, Y. T.
    NUMERICAL ALGORITHMS, 2016, 72 (03) : 749 - 767
  • [45] INVERSE SOURCE PROBLEM FOR A SPACE-TIME FRACTIONAL DIFFUSION EQUATION
    Ali, Muhammad
    Aziz, Sara
    Malik, Salman A.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (03) : 844 - 863
  • [46] Finite element method for space-time fractional diffusion equation
    L. B. Feng
    P. Zhuang
    F. Liu
    I. Turner
    Y. T. Gu
    Numerical Algorithms, 2016, 72 : 749 - 767
  • [47] INverse Source Problem for a Space-Time Fractional Diffusion Equation
    Muhammad Ali
    Sara Aziz
    Salman A. Malik
    Fractional Calculus and Applied Analysis, 2018, 21 : 844 - 863
  • [48] Space-time fractional diffusion equation associated with Jacobi expansions
    Ben Salem, Nejib
    APPLICABLE ANALYSIS, 2023, 102 (02) : 468 - 484
  • [49] Nonclassical Lie symmetry and conservation laws of the nonlinear time-fractional Korteweg-de Vries equation
    Hashemi, Mir Sajjad
    Haji-Badali, Ali
    Alizadeh, Farzaneh
    Inc, Mustafa
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2021, 73 (09)
  • [50] ANALYTICAL SOLUTION OF THE SPACE-TIME FRACTIONAL NONLINEAR SCHRODINGER EQUATION
    Abdel-Salam, Emad A-B.
    Yousif, Eltayeb A.
    El-Aasser, Mostafa A.
    REPORTS ON MATHEMATICAL PHYSICS, 2016, 77 (01) : 19 - 34