Finite element method for space-time fractional diffusion equation

被引:77
|
作者
Feng, L. B. [1 ]
Zhuang, P. [1 ,4 ]
Liu, F. [2 ]
Turner, I. [2 ]
Gu, Y. T. [3 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, GPO Box 2434, Brisbane, Qld 4001, Australia
[3] Queensland Univ Technol, Sch Chem Phys & Mech Engn, GPO Box 2434, Brisbane, Qld 4001, Australia
[4] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Xiamen 361005, Peoples R China
关键词
Finite element method; Space-time fractional diffusion equation; Riesz derivative; Caputo derivative; Riemann-Liouville derivative; DIFFERENCE APPROXIMATIONS; NUMERICAL-METHOD; SUBDIFFUSION;
D O I
10.1007/s11075-015-0065-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider two types of space-time fractional diffusion equations(STFDE) on a finite domain. The equation can be obtained from the standard diffusion equation by replacing the second order space derivative by a Riemann-Liouville fractional derivative of order beta (1 < beta a parts per thousand currency sign 2), and the first order time derivative by a Caputo fractional derivative of order gamma (0 < gamma a parts per thousand currency sign 1). For the 0 < gamma < 1 case, we present two schemes to approximate the time derivative and finite element methods for the space derivative, the optimal convergence rate can be reached O(tau (2-gamma) + h (2)) and O(tau (2) + h (2)), respectively, in which tau is the time step size and h is the space step size. And for the case gamma = 1, we use the Crank-Nicolson scheme to approximate the time derivative and obtain the optimal convergence rate O(tau (2) + h (2)) as well. Some numerical examples are given and the numerical results are in good agreement with the theoretical analysis.
引用
收藏
页码:749 / 767
页数:19
相关论文
共 50 条
  • [1] Finite element method for space-time fractional diffusion equation
    L. B. Feng
    P. Zhuang
    F. Liu
    I. Turner
    Y. T. Gu
    [J]. Numerical Algorithms, 2016, 72 : 749 - 767
  • [2] An α-robust analysis of finite element method for space-time fractional diffusion equation
    Yang, Yi
    Huang, Jin
    Li, Hu
    [J]. NUMERICAL ALGORITHMS, 2024,
  • [3] The time discontinuous space-time finite element method for fractional diffusion-wave equation
    Zheng, Yunying
    Zhao, Zhengang
    [J]. APPLIED NUMERICAL MATHEMATICS, 2020, 150 (150) : 105 - 116
  • [4] A Space-Time Finite Element Method for the Fractional Ginzburg-Landau Equation
    Liu, Jincun
    Li, Hong
    Liu, Yang
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (07)
  • [5] A fast solution technique for finite element discretization of the space-time fractional diffusion equation
    Liu, Zhengguang
    Cheng, Aijie
    Li, Xiaoli
    Wang, Hong
    [J]. APPLIED NUMERICAL MATHEMATICS, 2017, 119 : 146 - 163
  • [6] The Space-Time Spectral Method for a Fractional Diffusion Equation
    Huang, Yu
    [J]. PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 2: ADVANCES ON APPLIED MATHEMATICS AND COMPUTATION MATHEMATICS, 2010, : 347 - 350
  • [7] A SPACE-TIME SPECTRAL METHOD FOR THE TIME FRACTIONAL DIFFUSION EQUATION
    Li, Xianjuan
    Xu, Chuanju
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 2108 - 2131
  • [8] An Efficient Space-Time Method for Time Fractional Diffusion Equation
    Shen, Jie
    Sheng, Chang-Tao
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (02) : 1088 - 1110
  • [9] A fast discontinuous finite element discretization for the space-time fractional diffusion-wave equation
    Liu, Zhengguang
    Cheng, Aijie
    Li, Xiaoli
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (06) : 2043 - 2061
  • [10] Space-time finite element method for the multi-term time-space fractional diffusion equation on a two-dimensional domain
    Bu, Weiping
    Shu, Shi
    Yue, Xiaoqiang
    Xiao, Aiguo
    Zeng, Wei
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1367 - 1379