Space-time finite element method for the multi-term time-space fractional diffusion equation on a two-dimensional domain

被引:34
|
作者
Bu, Weiping [1 ,2 ]
Shu, Shi [1 ,2 ]
Yue, Xiaoqiang [1 ,2 ]
Xiao, Aiguo [1 ,2 ]
Zeng, Wei [1 ,2 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-term time-space fractional diffusion equation; Space-time finite element method; Wellposedness; Graded mesh; Error estimates; ANOMALOUS DIFFUSION; SCHEME;
D O I
10.1016/j.camwa.2018.11.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a space-time finite element method for the multi-term time-space fractional diffusion equation. First, some fractional derivative spaces are listed, some properties of the fractional derivatives and fractional derivative spaces are given, some definitions and properties of finite element spaces are introduced, and a space-time finite element fully discrete scheme for the considered problem is developed. Second, the existence, uniqueness and stability of the obtained numerical scheme are discussed. Third, under the hypothesis about singular behavior of exact solution near t = 0, the convergence is investigated in detail based on the suitable graded time mesh. At last, some numerical tests are given to verify the rationality and effectiveness of our method. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1367 / 1379
页数:13
相关论文
共 50 条
  • [1] The Unstructured Mesh Finite Element Method for the Two-Dimensional Multi-term Time-Space Fractional Diffusion-Wave Equation on an Irregular Convex Domain
    Fan, Wenping
    Jiang, Xiaoyun
    Liu, Fawang
    Anh, Vo
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (01) : 27 - 52
  • [2] Fast and efficient finite difference/finite element method for the two-dimensional multi-term time-space fractional Bloch-Torrey equation
    Bu, Weiping
    Zhao, Yanmin
    Shen, Chen
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2021, 398
  • [3] The Unstructured Mesh Finite Element Method for the Two-Dimensional Multi-term Time–Space Fractional Diffusion-Wave Equation on an Irregular Convex Domain
    Wenping Fan
    Xiaoyun Jiang
    Fawang Liu
    Vo Anh
    [J]. Journal of Scientific Computing, 2018, 77 : 27 - 52
  • [4] A numerical method for two-dimensional multi-term time-space fractional nonlinear diffusion-wave equations
    Huang, Jianfei
    Zhang, Jingna
    Arshad, Sadia
    Tang, Yifa
    [J]. APPLIED NUMERICAL MATHEMATICS, 2021, 159 : 159 - 173
  • [5] Finite element method for space-time fractional diffusion equation
    Feng, L. B.
    Zhuang, P.
    Liu, F.
    Turner, I.
    Gu, Y. T.
    [J]. NUMERICAL ALGORITHMS, 2016, 72 (03) : 749 - 767
  • [6] Finite element method for space-time fractional diffusion equation
    L. B. Feng
    P. Zhuang
    F. Liu
    I. Turner
    Y. T. Gu
    [J]. Numerical Algorithms, 2016, 72 : 749 - 767
  • [7] Space-time finite element adaptive AMG for multi-term time fractional advection diffusion equations
    Yue, Xiaoqiang
    Liu, Menghuan
    Shu, Shi
    Bu, Weiping
    Xu, Yehong
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (04) : 2769 - 2789
  • [8] A meshless method based on the Laplace transform for multi-term time-space fractional diffusion equation
    Yue, Zihan
    Jiang, Wei
    Wu, Boying
    Zhang, Biao
    [J]. AIMS MATHEMATICS, 2024, 9 (03): : 7040 - 7062
  • [9] An efficient finite element method for the two-dimensional nonlinear time-space fractional Schrodinger equation on an irregular convex domain
    Fan, Wenping
    Qi, Haitao
    [J]. APPLIED MATHEMATICS LETTERS, 2018, 86 : 103 - 110
  • [10] A fast algorithm for multi-term time-space fractional diffusion equation with fractional boundary condition
    Lu, Zhenhao
    Fan, Wenping
    [J]. NUMERICAL ALGORITHMS, 2024,