ON SYMMETRY GROUPS AND CONSERVATION LAWS FOR SPACE-TIME FRACTIONAL INHOMOGENEOUS NONLINEAR DIFFUSION EQUATION

被引:0
|
作者
Feng, Wei [1 ]
机构
[1] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310023, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
space-time fractional inhomogeneous nonlinear diffusion equation; symmetry groups; conservation laws; exact solutions; LIE-BACKLUND SYMMETRIES; PARTIAL-DIFFERENTIAL-EQUATIONS; POTENTIAL SYMMETRIES; INVARIANT SOLUTIONS; CLASSIFICATION; CONSTRUCTION; ORDER;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider a class of space-time fractional inhomogeneous nonlinear diffusion equations with Riemann-Liouville fractional derivative. Symmetry group method is applied to derive explicit solutions of the governing equation from the reduced fractional ordinary differential equations. Conservation laws admitted by the space-time fractional inhomogeneous nonlinear diffusion equations are obtained with the aid of the nonlinear self-adjointness method.
引用
收藏
页码:375 / 392
页数:18
相关论文
共 50 条
  • [21] Symmetry analysis and conservation laws to the space-fractional Prandtl equation
    Mingyang Pan
    Liancun Zheng
    Chunyan Liu
    Fawang Liu
    Nonlinear Dynamics, 2017, 90 : 1343 - 1351
  • [22] Similarity solution to fractional nonlinear space-time diffusion-wave equation
    Silva Costa, F.
    Marao, J. A. P. F.
    Alves Soares, J. C.
    Capelas de Oliveira, E.
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (03)
  • [23] Semianalytic Solution of Space-Time Fractional Diffusion Equation
    Elsaid, A.
    Shamseldeen, S.
    Madkour, S.
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 2016
  • [24] Solutions of the space-time fractional Cattaneo diffusion equation
    Qi, Haitao
    Jiang, Xiaoyun
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (11) : 1876 - 1883
  • [25] The space-time fractional diffusion equation with Caputo derivatives
    Huang F.
    Liu F.
    Journal of Applied Mathematics and Computing, 2005, 19 (1-2) : 179 - 190
  • [26] A SPACE-TIME SPECTRAL METHOD FOR THE TIME FRACTIONAL DIFFUSION EQUATION
    Li, Xianjuan
    Xu, Chuanju
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 2108 - 2131
  • [27] The Space-Time Spectral Method for a Fractional Diffusion Equation
    Huang, Yu
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 2: ADVANCES ON APPLIED MATHEMATICS AND COMPUTATION MATHEMATICS, 2010, : 347 - 350
  • [28] Modeling and simulation of the fractional space-time diffusion equation
    Gomez-Aguilar, J. F.
    Miranda-Hernandez, M.
    Lopez-Lopez, M. G.
    Alvarado-Martinez, V. M.
    Baleanu, D.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 30 (1-3) : 115 - 127
  • [29] An Efficient Space-Time Method for Time Fractional Diffusion Equation
    Shen, Jie
    Sheng, Chang-Tao
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (02) : 1088 - 1110
  • [30] Exact Solutions, Lie Symmetry Analysis and Conservation Laws of the Time Fractional Diffusion-Absorption Equation
    Hashemi, Mir Sajjad
    Balmeh, Zahra
    Baleanu, Dumitru
    MATHEMATICAL METHODS IN ENGINEERING: THEORETICAL ASPECTS, 2019, 23 : 97 - 109