Microcanonical finite-size scaling of an ideal Bose gas in a box

被引:0
|
作者
Wang, Honghui [1 ]
He, Jizhou [1 ]
Wang, Jianhui [1 ,2 ]
机构
[1] Nanchang Univ, Dept Phys, Nanchang 330031, Jiangxi, Peoples R China
[2] Chinese Acad Sci, Inst Theoret Phys, State Key Lab Theoret Phys, Beijing 100190, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL D | 2017年 / 71卷 / 01期
关键词
EINSTEIN CONDENSATION; CRITICAL-TEMPERATURE; PHASE-TRANSITIONS; PARTICLE NUMBER; SODIUM ATOMS; FLUCTUATIONS; SYSTEMS;
D O I
10.1140/epjd/e2016-70546-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We derive an exact recursive scheme to determine exactly the microcanonical partition function of a finite Bose system. Such a recursive approach is identical to that previously obtained within the context of counting statistics. Within the exact microcanonical ensemble, we study microcanonical finite-size scaling behaviors of condensate fraction and specific heat around the critical energy epsilon(c) for the finite ideal Bose system. We show that the microcanonical scaling functions governing the various critical behaviors are universal in the ideal Bose-Einstein condensates.
引用
下载
收藏
页数:5
相关论文
共 50 条
  • [11] Critical-point finite-size scaling in the microcanonical ensemble
    Bruce, AD
    Wilding, NB
    PHYSICAL REVIEW E, 1999, 60 (04): : 3748 - 3760
  • [12] Finite-size scaling and the role of the thermodynamic ensemble in the transition temperature of a dilute Bose gas
    Mueller, EJ
    Baym, G
    Holzmann, M
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2001, 34 (23) : 4561 - 4570
  • [13] FINITE-SIZE EFFECTS IN THE IDEAL FERMI GAS
    SUBRAHMANYAM, V
    BARMA, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (11): : L489 - L496
  • [14] Finite-size scaling in the driven lattice gas
    Caracciolo, S
    Gambassi, A
    Gubinelli, M
    Pelissetto, A
    JOURNAL OF STATISTICAL PHYSICS, 2004, 115 (1-2) : 281 - 322
  • [15] Finite-Size Scaling in the Driven Lattice Gas
    Sergio Caracciolo
    Andrea Gambassi
    Massimiliano Gubinelli
    Andrea Pelissetto
    Journal of Statistical Physics, 2004, 115 : 281 - 322
  • [16] Finite-size behaviour of the microcanonical specific heat
    Behringer, H
    Pleimling, M
    Hüller, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (05): : 973 - 985
  • [17] Finite-size Scaling Considerations on the Ground State Microcanonical Temperature in Entropic Sampling Simulations
    Caparica, A. A.
    DaSilva, Claudio J.
    BRAZILIAN JOURNAL OF PHYSICS, 2015, 45 (06) : 713 - 718
  • [18] Microcanonical analysis of a finite-size nonequilibrium system
    Lee, Julian
    PHYSICAL REVIEW E, 2016, 93 (05)
  • [19] Finite-size Scaling Considerations on the Ground State Microcanonical Temperature in Entropic Sampling Simulations
    A. A. Caparica
    Cláudio J. DaSilva
    Brazilian Journal of Physics, 2015, 45 : 713 - 718
  • [20] Finite-size scaling analysis of the eigenstate thermalization hypothesis in a one-dimensional interacting Bose gas
    Ikeda, Tatsuhiko N.
    Watanabe, Yu
    Ueda, Masahito
    PHYSICAL REVIEW E, 2013, 87 (01):