Microcanonical finite-size scaling of an ideal Bose gas in a box

被引:0
|
作者
Wang, Honghui [1 ]
He, Jizhou [1 ]
Wang, Jianhui [1 ,2 ]
机构
[1] Nanchang Univ, Dept Phys, Nanchang 330031, Jiangxi, Peoples R China
[2] Chinese Acad Sci, Inst Theoret Phys, State Key Lab Theoret Phys, Beijing 100190, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL D | 2017年 / 71卷 / 01期
关键词
EINSTEIN CONDENSATION; CRITICAL-TEMPERATURE; PHASE-TRANSITIONS; PARTICLE NUMBER; SODIUM ATOMS; FLUCTUATIONS; SYSTEMS;
D O I
10.1140/epjd/e2016-70546-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We derive an exact recursive scheme to determine exactly the microcanonical partition function of a finite Bose system. Such a recursive approach is identical to that previously obtained within the context of counting statistics. Within the exact microcanonical ensemble, we study microcanonical finite-size scaling behaviors of condensate fraction and specific heat around the critical energy epsilon(c) for the finite ideal Bose system. We show that the microcanonical scaling functions governing the various critical behaviors are universal in the ideal Bose-Einstein condensates.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Finite-size effects in a D-dimensional ideal Fermi gas
    Department of Physics, Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005, China
    不详
    Chin. Phys., 2009, 12 (5189-5195):
  • [32] Finite-size effects in a D-dimensional ideal Fermi gas
    苏国珍
    欧聪杰
    陈金灿
    Chinese Physics B, 2009, 18 (12) : 5189 - 5195
  • [33] Finite-size effects in a D-dimensional ideal Fermi gas
    Su Guo-Zhen
    Ou Cong-Jie
    Wang A Qiu-Ping
    Chen Jin-Can
    CHINESE PHYSICS B, 2009, 18 (12) : 5189 - 5195
  • [34] A microcanonical entropy correcting finite-size effects in small systems
    Franzosi, Roberto
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [35] Finite-size scaling in extreme statistics
    Gyoergyi, G.
    Moloney, N. R.
    Ozogany, K.
    Racz, Z.
    PHYSICAL REVIEW LETTERS, 2008, 100 (21)
  • [36] TRANSITION RATES OF REACTIONS IN THE MICROCANONICAL ENSEMBLE AND THE FINITE-SIZE EFFECT
    NIEGAWA, A
    TAKASHIBA, K
    CANADIAN JOURNAL OF PHYSICS, 1993, 71 (5-6) : 276 - 279
  • [37] FINITE-SIZE SCALING AND PHENOMENOLOGICAL RENORMALIZATION
    NIGHTINGALE, P
    JOURNAL OF APPLIED PHYSICS, 1982, 53 (11) : 7927 - 7932
  • [38] Finite-size scaling at quantum transitions
    Campostrini, Massimo
    Pelissetto, Andrea
    Vicari, Ettore
    PHYSICAL REVIEW B, 2014, 89 (09)
  • [39] Corrected finite-size scaling in percolation
    Li, Jiantong
    Ostling, Mikael
    PHYSICAL REVIEW E, 2012, 86 (04)
  • [40] MAGNETIZATIONS FROM FINITE-SIZE SCALING
    HAMER, CJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (12): : L675 - L683