Finite-size scaling in the driven lattice gas

被引:20
|
作者
Caracciolo, S [1 ]
Gambassi, A
Gubinelli, M
Pelissetto, A
机构
[1] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy
[2] Univ Milan, Ist Nazl Fis Nucl, I-20133 Milan, Italy
[3] Max Planck Inst Met Res, D-70569 Stuttgart, Germany
[4] Univ Stuttgart, Inst Theoret & Angew Phys, D-70569 Stuttgart, Germany
[5] Univ Pisa, Dept Matemat Aplicada, I-56100 Pisa, Italy
[6] Univ Pisa, Ist Nazl Fis Nucl, I-56100 Pisa, Italy
[7] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[8] Univ Roma La Sapienza, Ist Nazl Fis Nucl, I-00185 Rome, Italy
关键词
driven lattice gas; finite-size scaling; critical behavior; nonequilibrium statistical mechanics;
D O I
10.1023/B:JOSS.0000019824.34397.1d
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a Monte Carlo study of the high-temperature phase of the two-dimensional driven lattice gas at infinite driving field. We define a finite-volume correlation length, verify that this definition has a good infinite-volume limit independent of the lattice geometry, and study its finite-size-scaling behavior. The results for the correlation length are in good agreement with the predictions based on the field theory proposed by Janssen, Schmittmann, Leung, and Cardy. The theoretical predictions for the susceptibility and the magnetization are also well verified. We show that the transverse Binder parameter vanishes at the critical point in all dimensions d greater than or equal to 2 and discuss how such result should be expected in the theory of Janssen et al. in spite of the existence of a dangerously irrelevant operator. Our results confirm the Gaussian nature of the transverse excitations.
引用
收藏
页码:281 / 322
页数:42
相关论文
共 50 条
  • [1] Finite-Size Scaling in the Driven Lattice Gas
    Sergio Caracciolo
    Andrea Gambassi
    Massimiliano Gubinelli
    Andrea Pelissetto
    [J]. Journal of Statistical Physics, 2004, 115 : 281 - 322
  • [2] UNIVERSAL FINITE-SIZE SCALING AMPLITUDES ON A TORUS FOR THE TRIANGULAR ISING LATTICE GAS
    PARK, H
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (10): : 1789 - 1799
  • [3] FINITE-SIZE SCALING STUDY OF A LATTICE-GAS MODEL FOR OXYGEN CHEMISORBED ON TUNGSTEN
    RIKVOLD, PA
    KASKI, K
    GUNTON, JD
    YALABIK, MC
    [J]. PHYSICAL REVIEW B, 1984, 29 (11): : 6285 - 6294
  • [4] DETERMINATION OF MULTICRITICAL POINTS FOR LATTICE-GAS MODELS BY FINITE-SIZE SCALING OF THE SUSCEPTIBILITY
    RIKVOLD, PA
    [J]. PHYSICAL REVIEW B, 1985, 32 (07): : 4756 - 4759
  • [5] Finite-size scaling in the transverse Ising model on a square lattice
    Hamer, CJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (38): : 6683 - 6698
  • [6] Finite-size scaling of the quark condensate in quenched lattice QCD
    Hernández, P
    Jansen, K
    Lellouch, L
    [J]. PHYSICS LETTERS B, 1999, 469 (1-4) : 198 - 204
  • [7] Finite-size scaling of branch-points in lattice models
    Williams, NO
    Lavis, DA
    [J]. PHYSICS LETTERS A, 1996, 217 (4-5) : 275 - 279
  • [8] Finite-size corrections and scaling for the dimer model on the checkerboard lattice
    Izmailian, Nickolay Sh.
    Wu, Ming-Chya
    Hu, Chin-Kun
    [J]. PHYSICAL REVIEW E, 2016, 94 (05)
  • [9] Finite-size scaling characterization of the ±J diluted Ising lattice
    Ramirez-Pastor, AJ
    Nieto, E
    Contreras, S
    Vogel, EE
    [J]. REVISTA MEXICANA DE FISICA, 1998, 44 : 89 - 92
  • [10] Scaling relations and finite-size scaling in gravitationally correlated lattice percolation models
    Zhu, Chen-Ping
    Jia, Long-Tao
    Sun, Long-Long
    Kim, Beom Jun
    Wang, Bing-Hong
    Hu, Chin-Kun
    Stanley, H. E.
    [J]. CHINESE JOURNAL OF PHYSICS, 2020, 64 : 25 - 34