Particle swarm optimisation for dynamic optimisation problems: a review

被引:52
|
作者
Jordehi, Ahmad Rezaee [1 ]
机构
[1] Univ Putra Malaysia, Dept Elect Engn, Serdang 43400, Malaysia
来源
NEURAL COMPUTING & APPLICATIONS | 2014年 / 25卷 / 7-8期
关键词
Particle swarm optimisation; Optimisation; Dynamic optimisation problem; ALGORITHM; OPTIMA; STRATEGY; SYSTEM; MODEL; PSO;
D O I
10.1007/s00521-014-1661-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Some real-world optimisation problems are dynamic; that is, their objective function and/or constraints vary over time. Solving such problems is very challenging. Particle swarm optimisation (PSO) is a well-known and efficient optimisation algorithm. In this paper, the PSO variants, devised for dynamic optimisation problems, are reviewed. This is the first comprehensive review that is conducted on PSO variants in dynamic environments. The author believes that this paper can be useful for researchers who intend to solve dynamic optimisation problems.
引用
收藏
页码:1507 / 1516
页数:10
相关论文
共 50 条
  • [1] Particle swarm optimisation for dynamic optimisation problems: a review
    Ahmad Rezaee Jordehi
    Neural Computing and Applications, 2014, 25 : 1507 - 1516
  • [2] Particle swarm optimisation for discrete optimisation problems: a review
    Jordehi, Ahmad Rezaee
    Jasni, Jasronita
    ARTIFICIAL INTELLIGENCE REVIEW, 2015, 43 (02) : 243 - 258
  • [3] Particle swarm optimisation for discrete optimisation problems: a review
    Ahmad Rezaee Jordehi
    Jasronita Jasni
    Artificial Intelligence Review, 2015, 43 : 243 - 258
  • [4] A memetic particle swarm optimisation algorithm for dynamic multi-modal optimisation problems
    Wang, Hongfeng
    Yang, Shengxiang
    Ip, W. H.
    Wang, Dingwei
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2012, 43 (07) : 1268 - 1283
  • [5] Cultural-based particle swarm for dynamic optimisation problems
    Daneshyari, Moayed
    Yen, Gary G.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2012, 43 (07) : 1284 - 1304
  • [6] A Dynamic Neighbourhood Particle Swarm Optimisation Algorithm for Constrained Optimisation
    Li, Lily D.
    Yu, Xinghuo
    Li, Xiaodong
    Guo, William
    IECON 2011: 37TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2011,
  • [7] Multi-guide particle swarm optimisation archive management strategies for dynamic optimisation problems
    Paweł Joćko
    Beatrice M. Ombuki-Berman
    Andries P. Engelbrecht
    Swarm Intelligence, 2022, 16 : 143 - 168
  • [8] Multi-guide particle swarm optimisation archive management strategies for dynamic optimisation problems
    Jocko, Pawel
    Ombuki-Berman, Beatrice M.
    Engelbrecht, Andries P.
    SWARM INTELLIGENCE, 2022, 16 (02) : 143 - 168
  • [9] Restarting Particle Swarm Optimisation for Deceptive Problems
    Hendtlass, Tim
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [10] Population diversity of particle swarm optimisation algorithms for solving multimodal optimisation problems
    Cheng, Shi
    Chen, Junfeng
    Qin, Quande
    Shi, Yuhui
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2018, 17 (01) : 69 - 79