Particle swarm optimisation for dynamic optimisation problems: a review

被引:52
|
作者
Jordehi, Ahmad Rezaee [1 ]
机构
[1] Univ Putra Malaysia, Dept Elect Engn, Serdang 43400, Malaysia
来源
NEURAL COMPUTING & APPLICATIONS | 2014年 / 25卷 / 7-8期
关键词
Particle swarm optimisation; Optimisation; Dynamic optimisation problem; ALGORITHM; OPTIMA; STRATEGY; SYSTEM; MODEL; PSO;
D O I
10.1007/s00521-014-1661-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Some real-world optimisation problems are dynamic; that is, their objective function and/or constraints vary over time. Solving such problems is very challenging. Particle swarm optimisation (PSO) is a well-known and efficient optimisation algorithm. In this paper, the PSO variants, devised for dynamic optimisation problems, are reviewed. This is the first comprehensive review that is conducted on PSO variants in dynamic environments. The author believes that this paper can be useful for researchers who intend to solve dynamic optimisation problems.
引用
收藏
页码:1507 / 1516
页数:10
相关论文
共 50 条
  • [21] Perceptive particle swarm optimisation
    Kaewkamnerdpong, B
    Bentley, PJ
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, 2005, : 259 - 263
  • [22] Set-Based Particle Swarm Optimisation: A Review
    van Zyl, Jean-Pierre
    Engelbrecht, Andries Petrus
    MATHEMATICS, 2023, 11 (13)
  • [23] Boid particle swarm optimisation
    Cui, Zhihua
    Shi, Zhongzhi
    International Journal of Innovative Computing and Applications, 2009, 2 (02) : 78 - 85
  • [24] Geometric particle swarm optimisation
    Moraglio, Alberto
    Di Chio, Cecilia
    Poli, Riccardo
    GENETIC PROGRAMMING, PROCEEDINGS, 2007, 4445 : 125 - +
  • [25] On the Scalability of Particle Swarm Optimisation
    Piccand, Sebastien
    O'Neill, Michael
    Walker, Jacqueline
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 2505 - +
  • [26] Influence of the Archive Size on the Performance of the Dynamic Vector Evaluated Particle Swarm Optimisation Algorithm solving Dynamic Multi-objective Optimisation Problems
    Helbig, Marde
    Engelbrecht, Andries
    2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 1926 - 1933
  • [27] Dynamic Multi-objective Optimisation Using Multi-guide Particle Swarm Optimisation
    Jocko, Pawel
    Ombuki-Berman, Beatrice M.
    Engelbrecht, Andries P.
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [28] Particle Swarm Optimisation for Open Shop Problems with Fuzzy Durations
    Jose Palacios, Juan
    Gonzalez-Rodriguez, Ines
    Vela, Camino R.
    Puente, Jorge
    FOUNDATIONS ON NATURAL AND ARTIFICIAL COMPUTATION: 4TH INTERNATIONAL WORK-CONFERENCE ON THE INTERPLAY BETWEEN NATURAL AND ARTIFICIAL COMPUTATION, IWINAC 2011, PART I, 2011, 6686 : 362 - 371
  • [29] A combinatorial particle swarm optimisation for solving permutation flowshop problems
    Jarboui, Bassem
    Ibrahim, Saber
    Siarry, Patrick
    Rebai, Abdelwaheb
    COMPUTERS & INDUSTRIAL ENGINEERING, 2008, 54 (03) : 526 - 538
  • [30] Greedy continuous particle swarm optimisation algorithm for the knapsack problems
    Shen, Xianjun
    Li, Yanan
    Chen, Caixia
    Yang, Jincai
    Zhang, Dabin
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2012, 44 (02) : 137 - 144