Particle swarm optimisation for dynamic optimisation problems: a review

被引:52
|
作者
Jordehi, Ahmad Rezaee [1 ]
机构
[1] Univ Putra Malaysia, Dept Elect Engn, Serdang 43400, Malaysia
来源
NEURAL COMPUTING & APPLICATIONS | 2014年 / 25卷 / 7-8期
关键词
Particle swarm optimisation; Optimisation; Dynamic optimisation problem; ALGORITHM; OPTIMA; STRATEGY; SYSTEM; MODEL; PSO;
D O I
10.1007/s00521-014-1661-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Some real-world optimisation problems are dynamic; that is, their objective function and/or constraints vary over time. Solving such problems is very challenging. Particle swarm optimisation (PSO) is a well-known and efficient optimisation algorithm. In this paper, the PSO variants, devised for dynamic optimisation problems, are reviewed. This is the first comprehensive review that is conducted on PSO variants in dynamic environments. The author believes that this paper can be useful for researchers who intend to solve dynamic optimisation problems.
引用
收藏
页码:1507 / 1516
页数:10
相关论文
共 50 条
  • [41] CriPS: Critical Particle Swarm Optimisation
    Erskine, Adam
    Herrmann, J. Michael
    ECAL 2015: THE THIRTEENTH EUROPEAN CONFERENCE ON ARTIFICIAL LIFE, 2015, : 207 - 214
  • [42] Preserving diversity in particle swarm optimisation
    Hendtlass, T
    DEVELOPMENTS IN APPLIED ARTIFICIAL INTELLIGENCE, 2003, 2718 : 31 - 40
  • [43] Adaptive multifactorial particle swarm optimisation
    Tang, Zedong
    Gong, Maoguo
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2019, 4 (01) : 37 - 46
  • [44] Division of Labor in Particle Swarm Optimisation
    Vesterstrom, JS
    Riget, J
    Krink, T
    CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 1570 - 1575
  • [45] Particle swarm optimisation with Kalman correction
    Naha, A.
    Deb, A. K.
    ELECTRONICS LETTERS, 2013, 49 (07) : 465 - 466
  • [46] Beyond Standard Particle Swarm Optimisation
    Clerc, Maurice
    INTERNATIONAL JOURNAL OF SWARM INTELLIGENCE RESEARCH, 2010, 1 (04) : 46 - 61
  • [47] Avoidance Strategies in Particle Swarm Optimisation
    Mason, Karl
    Howley, Enda
    MENDEL 2015: RECENT ADVANCES IN SOFT COMPUTING, 2015, 378 : 3 - 15
  • [48] Stochastic stability of particle swarm optimisation
    Erskine, Adam
    Joyce, Thomas
    Herrmann, J. Michael
    SWARM INTELLIGENCE, 2017, 11 (3-4) : 295 - 315
  • [49] Particle swarm optimisation: time for uniformisation
    Luis Fernandez-Martinez, Juan
    Garcia-Gonzalo, Esperanza
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2013, 4 (01) : 16 - 33
  • [50] Perceptive particle swarm optimisation: An investigation
    Kaewkamnerdpong, B
    Bentley, PJ
    2005 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2005, : 169 - 176