Multi-guide particle swarm optimisation archive management strategies for dynamic optimisation problems

被引:0
|
作者
Paweł Joćko
Beatrice M. Ombuki-Berman
Andries P. Engelbrecht
机构
[1] Brock University,Department of Computer Science
[2] Stellenbosch University,Department of Industrial Engineering, and Computer Science Division
来源
Swarm Intelligence | 2022年 / 16卷
关键词
Dynamic multi-objective optimisation; Multi-guide particle swarm optimisation; Archive management;
D O I
暂无
中图分类号
学科分类号
摘要
This study presents archive management approaches for dynamic multi-objective optimisation problems (DMOPs) using the multi-guide particle swarm optimisation (MGPSO) algorithm by Scheepers et al. (Swarm Intell, 13(3–4):245–276, 2019, https://doi.org/10.1007/s11721-019-00171-0). The MGPSO is a multi-swarm approach developed for static multi-objective optimisation problems, where each subswarm optimises one of the objectives. It uses a bounded archive that is based on a crowding distance archive implementation. This paper adapts the MGPSO algorithm to solve DMOPs by proposing alternative archive update strategies to allow efficient tracking of the changing Pareto-optimal front. To evaluate the adapted MGPSO for DMOPs, a total of twenty-nine benchmark functions and six performance measures were implemented. The problem set consists of problems with only two or three objectives, and the exact time of the changes is assumed to be known beforehand. The experiments were run against five different environment types, where both the frequency of changes and the severity of changes parameters control how often and how severe the changes are during the optimisation of a DMOP. The best archive management approach was compared to the other state-of-the-art dynamic multi-objective optimisation algorithms (DMOAs). An extensive empirical analysis shows that MGPSO with a local search approach to the archive management achieves very competitive and oftentimes better performance when compared with the other DMOAs.
引用
收藏
页码:143 / 168
页数:25
相关论文
共 50 条
  • [1] Multi-guide particle swarm optimisation archive management strategies for dynamic optimisation problems
    Jocko, Pawel
    Ombuki-Berman, Beatrice M.
    Engelbrecht, Andries P.
    [J]. SWARM INTELLIGENCE, 2022, 16 (02) : 143 - 168
  • [2] Dynamic Multi-objective Optimisation Using Multi-guide Particle Swarm Optimisation
    Jocko, Pawel
    Ombuki-Berman, Beatrice M.
    Engelbrecht, Andries P.
    [J]. 2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [3] Archive Management for Dynamic Multi-objective Optimisation Problems using Vector Evaluated Particle Swarm Optimisation
    Helbig, Marde
    Engelbrecht, Andries P.
    [J]. 2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 2047 - 2054
  • [4] Particle swarm optimisation for dynamic optimisation problems: a review
    Jordehi, Ahmad Rezaee
    [J]. NEURAL COMPUTING & APPLICATIONS, 2014, 25 (7-8): : 1507 - 1516
  • [5] Particle swarm optimisation for dynamic optimisation problems: a review
    Ahmad Rezaee Jordehi
    [J]. Neural Computing and Applications, 2014, 25 : 1507 - 1516
  • [6] A memetic particle swarm optimisation algorithm for dynamic multi-modal optimisation problems
    Wang, Hongfeng
    Yang, Shengxiang
    Ip, W. H.
    Wang, Dingwei
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2012, 43 (07) : 1268 - 1283
  • [7] Analyses of Guide Update Approaches for Vector Evaluated Particle Swarm Optimisation on Dynamic Multi-Objective Optimisation Problems
    Helbig, Marde
    Engelbrecht, Andries P.
    [J]. 2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [8] Influence of the Archive Size on the Performance of the Dynamic Vector Evaluated Particle Swarm Optimisation Algorithm solving Dynamic Multi-objective Optimisation Problems
    Helbig, Marde
    Engelbrecht, Andries
    [J]. 2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 1926 - 1933
  • [9] Particle swarm optimisation for discrete optimisation problems: a review
    Jordehi, Ahmad Rezaee
    Jasni, Jasronita
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2015, 43 (02) : 243 - 258
  • [10] Particle swarm optimisation for discrete optimisation problems: a review
    Ahmad Rezaee Jordehi
    Jasronita Jasni
    [J]. Artificial Intelligence Review, 2015, 43 : 243 - 258