Analyses of Guide Update Approaches for Vector Evaluated Particle Swarm Optimisation on Dynamic Multi-Objective Optimisation Problems

被引:0
|
作者
Helbig, Marde [1 ,2 ]
Engelbrecht, Andries P. [2 ]
机构
[1] CSIR, Meraka Inst, ZA-0184 Pretoria, South Africa
[2] Univ Pretoria, Dept Comp Sci, Pretoria, South Africa
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The vector evaluated particle swarm optimisation (VEPSO) algorithm is a multi-swarm variation of particle swarm optimisation (PSO) used to solve static multi-objective optimisation problems (SMOOPs). Recently, VEPSO was extended to the dynamic VEPSO (DVEPSO) algorithm to solve dynamic multi-objective optimisation problems (DMOOPs) that have at least one objective that changes over time. The search process of DVEPSO is driven through local and global guides that can be updated in various ways. This paper investigates the influence of various guide update approaches on the performance of DVEPSO. DVEPSO is also compared against a competitive-cooperative evolutionary algorithm. The results indicate that DVEPSO performs well in fast changing environments, but struggles to converge to discontinuous Pareto-optimal fronts (POFs).
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Solving Dynamic Multi-Objective Problems with Vector Evaluated Particle Swarm Optimisation
    Greeff, Marde
    Engelbrecht, Andries. P.
    [J]. 2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 2917 - 2924
  • [2] Heterogeneous Dynamic Vector Evaluated Particle Swarm Optimisation for Dynamic Multi-objective Optimisation
    Helbig, Marde
    Engelbrecht, Andries P.
    [J]. 2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 3151 - 3159
  • [3] Archive Management for Dynamic Multi-objective Optimisation Problems using Vector Evaluated Particle Swarm Optimisation
    Helbig, Marde
    Engelbrecht, Andries P.
    [J]. 2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 2047 - 2054
  • [4] Influence of the Archive Size on the Performance of the Dynamic Vector Evaluated Particle Swarm Optimisation Algorithm solving Dynamic Multi-objective Optimisation Problems
    Helbig, Marde
    Engelbrecht, Andries
    [J]. 2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 1926 - 1933
  • [5] Dynamic Multi-objective Optimisation Using Multi-guide Particle Swarm Optimisation
    Jocko, Pawel
    Ombuki-Berman, Beatrice M.
    Engelbrecht, Andries P.
    [J]. 2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [6] Multi-guide particle swarm optimisation archive management strategies for dynamic optimisation problems
    Paweł Joćko
    Beatrice M. Ombuki-Berman
    Andries P. Engelbrecht
    [J]. Swarm Intelligence, 2022, 16 : 143 - 168
  • [7] Multi-guide particle swarm optimisation archive management strategies for dynamic optimisation problems
    Jocko, Pawel
    Ombuki-Berman, Beatrice M.
    Engelbrecht, Andries P.
    [J]. SWARM INTELLIGENCE, 2022, 16 (02) : 143 - 168
  • [8] An improved multi-objective particle swarm optimisation algorithm
    Fu, Tiaoping
    Shang Ya-Ling
    [J]. INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2011, 12 (1-2) : 66 - 71
  • [9] An evolutionary particle swarm algorithm for multi-objective optimisation
    Chen, Minyou
    Wu, Chuansheng
    Fleming, Peter
    [J]. 2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 3269 - +
  • [10] Enhanced multi-objective particle swarm optimisation postures
    Saremi, Shahrzad
    Mirjalili, Seyedali
    Lewis, Andrew
    Liew, Alan Wee Chung
    Dong, Jin Song
    [J]. KNOWLEDGE-BASED SYSTEMS, 2018, 158 : 175 - 195