Enhancement of cerebrovascular 4D flow MRI velocity fields using machine learning and computational fluid dynamics simulation data

被引:48
|
作者
Rutkowski, David R. [1 ,2 ]
Roldan-Alzate, Alejandro [1 ,2 ]
Johnson, Kevin M. [2 ,3 ]
机构
[1] Univ Wisconsin, Mech Engn, Madison, WI USA
[2] Univ Wisconsin, Radiol, 1111 Highland Ave, Madison, WI 53705 USA
[3] Univ Wisconsin, Med Phys, 1111 Highland Ave, Madison, WI 53705 USA
基金
美国国家卫生研究院;
关键词
HEMODYNAMICS; ACCURACY;
D O I
10.1038/s41598-021-89636-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Blood flow metrics obtained with four-dimensional (4D) flow phase contrast (PC) magnetic resonance imaging (MRI) can be of great value in clinical and experimental cerebrovascular analysis. However, limitations in both quantitative and qualitative analyses can result from errors inherent to PC MRI. One method that excels in creating low-error, physics-based, velocity fields is computational fluid dynamics (CFD). Augmentation of cerebral 4D flow MRI data with CFD-informed neural networks may provide a method to produce highly accurate physiological flow fields. In this preliminary study, the potential utility of such a method was demonstrated by using high resolution patient-specific CFD data to train a convolutional neural network, and then using the trained network to enhance MRI-derived velocity fields in cerebral blood vessel data sets. Through testing on simulated images, phantom data, and cerebrovascular 4D flow data from 20 patients, the trained network successfully de-noised flow images, decreased velocity error, and enhanced near-vessel-wall velocity quantification and visualization. Such image enhancement can improve experimental and clinical qualitative and quantitative cerebrovascular PC MRI analysis.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] 4D flow MRI hemodynamic biomarkers for cerebrovascular diseases
    Wahlin, Anders
    Eklund, Anders
    Malm, Jan
    JOURNAL OF INTERNAL MEDICINE, 2022, 291 (02) : 115 - 127
  • [22] 4D flow MRI velocity uncertainty quantification
    Rothenberger, Sean M.
    Zhang, Jiacheng
    Markl, Michael
    Craig, Bruce A.
    Vlachos, Pavlos P.
    Rayz, Vitaliy L.
    MAGNETIC RESONANCE IN MEDICINE, 2025, 93 (01) : 397 - 410
  • [23] The effect of resolution on viscous dissipation measured with 4D flow MRI in patients with Fontan circulation: Evaluation using computational fluid dynamics
    Cibis, Merih
    Jarvis, Kelly
    Markl, Michael
    Rose, Michael
    Rigsby, Cynthia
    Barker, Alex J.
    Wentzel, Jolanda J.
    JOURNAL OF BIOMECHANICS, 2015, 48 (12) : 2984 - 2989
  • [24] Age-Related Reductions in Cerebrovascular Reactivity Using 4D Flow MRI
    Miller, Kathleen B.
    Howery, Anna J.
    Rivera-Rivera, Leonardo A.
    Johnson, Sterling C.
    Rowley, Howard A.
    Wieben, Oliver
    Barnes, Jill N.
    FRONTIERS IN AGING NEUROSCIENCE, 2019, 11
  • [25] Reconstruction and Validation of Arterial Geometries for Computational Fluid Dynamics Using Multiple Temporal Frames of 4D Flow-MRI Magnitude Images
    Scott MacDonald Black
    Craig Maclean
    Pauline Hall Barrientos
    Konstantinos Ritos
    Asimina Kazakidi
    Cardiovascular Engineering and Technology, 2023, 14 : 655 - 676
  • [26] Reconstruction and Validation of Arterial Geometries for Computational Fluid Dynamics Using Multiple Temporal Frames of 4D Flow-MRI Magnitude Images
    Black, Scott MacDonald
    Maclean, Craig
    Barrientos, Pauline Hall
    Ritos, Konstantinos
    Kazakidi, Asimina
    CARDIOVASCULAR ENGINEERING AND TECHNOLOGY, 2023, 14 (5) : 655 - 676
  • [27] Compressed-sensing accelerated 4D flow MRI of cerebrospinal fluid dynamics
    Elena Jaeger
    Kristina Sonnabend
    Frank Schaarschmidt
    David Maintz
    Kilian Weiss
    Alexander C. Bunck
    Fluids and Barriers of the CNS, 17
  • [28] Compressed-sensing accelerated 4D flow MRI of cerebrospinal fluid dynamics
    Jaeger, Elena
    Sonnabend, Kristina
    Schaarschmidt, Frank
    Maintz, David
    Weiss, Kilian
    Bunck, Alexander C.
    FLUIDS AND BARRIERS OF THE CNS, 2020, 17 (01)
  • [29] Machine learning modeling based on informer for predicting complex unsteady flow fields to reduce consumption of computational fluid dynamics simulation
    Fang, Mingkun
    Zhang, Fangfang
    Zhu, Di
    Xiao, Ruofu
    Tao, Ran
    ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2025, 19 (01)
  • [30] Comparison of 4D Phase-Contrast MRI Flow Measurements to Computational Fluid Dynamics Simulations of Cerebrospinal Fluid Motion in the Cervical Spine
    Yiallourou, Theresia I.
    Kroeger, Jan Robert
    Stergiopulos, Nikolaos
    Maintz, David
    Martin, Bryn A.
    Bunck, Alexander C.
    PLOS ONE, 2012, 7 (12):