Enhancement of cerebrovascular 4D flow MRI velocity fields using machine learning and computational fluid dynamics simulation data

被引:48
|
作者
Rutkowski, David R. [1 ,2 ]
Roldan-Alzate, Alejandro [1 ,2 ]
Johnson, Kevin M. [2 ,3 ]
机构
[1] Univ Wisconsin, Mech Engn, Madison, WI USA
[2] Univ Wisconsin, Radiol, 1111 Highland Ave, Madison, WI 53705 USA
[3] Univ Wisconsin, Med Phys, 1111 Highland Ave, Madison, WI 53705 USA
基金
美国国家卫生研究院;
关键词
HEMODYNAMICS; ACCURACY;
D O I
10.1038/s41598-021-89636-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Blood flow metrics obtained with four-dimensional (4D) flow phase contrast (PC) magnetic resonance imaging (MRI) can be of great value in clinical and experimental cerebrovascular analysis. However, limitations in both quantitative and qualitative analyses can result from errors inherent to PC MRI. One method that excels in creating low-error, physics-based, velocity fields is computational fluid dynamics (CFD). Augmentation of cerebral 4D flow MRI data with CFD-informed neural networks may provide a method to produce highly accurate physiological flow fields. In this preliminary study, the potential utility of such a method was demonstrated by using high resolution patient-specific CFD data to train a convolutional neural network, and then using the trained network to enhance MRI-derived velocity fields in cerebral blood vessel data sets. Through testing on simulated images, phantom data, and cerebrovascular 4D flow data from 20 patients, the trained network successfully de-noised flow images, decreased velocity error, and enhanced near-vessel-wall velocity quantification and visualization. Such image enhancement can improve experimental and clinical qualitative and quantitative cerebrovascular PC MRI analysis.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] New imaging tools in cardiovascular medicine: computational fluid dynamics and 4D flow MRI
    Keiichi Itatani
    Shohei Miyazaki
    Tokoki Furusawa
    Satoshi Numata
    Sachiko Yamazaki
    Kazuki Morimoto
    Rina Makino
    Hiroko Morichi
    Teruyasu Nishino
    Hitoshi Yaku
    General Thoracic and Cardiovascular Surgery, 2017, 65 : 611 - 621
  • [12] Ultrasound Simulation of Complex Flow Velocity Fields Based on Computational Fluid Dynamics
    Swillens, Abigail
    Lovstakken, Lasse
    Kips, Jan
    Torp, Hans
    Segers, Patrick
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2009, 56 (03) : 546 - 556
  • [13] Deep learning phase error correction for cerebrovascular 4D flow MRI
    Srinivas, Shanmukha
    Masutani, Evan
    Norbash, Alexander
    Hsiao, Albert
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [14] Accelerated sequences of 4D flow MRI using GRAPPA and compressed sensing: A comparison against conventional MRI and computational fluid dynamics
    Garreau, Morgane
    Puiseux, Thomas
    Toupin, Solenn
    Giese, Daniel
    Mendez, Simon
    Nicoud, Franck
    Moreno, Ramiro
    MAGNETIC RESONANCE IN MEDICINE, 2022, 88 (06) : 2432 - 2446
  • [15] Deep learning phase error correction for cerebrovascular 4D flow MRI
    Shanmukha Srinivas
    Evan Masutani
    Alexander Norbash
    Albert Hsiao
    Scientific Reports, 13
  • [16] A comparison of machine learning methods for recovering noisy and missing 4D flow MRI data
    Csala, Hunor
    Amili, Omid
    D'Souza, Roshan M.
    Arzani, Amirhossein
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2024, 40 (11)
  • [17] Advances in machine learning applications for cardiovascular 4D flow MRI
    Peper, Eva S. S.
    van Ooij, Pim
    Jung, Bernd
    Huber, Adrian
    Graeni, Christoph
    Bastiaansen, Jessica A. M.
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [18] Surgical planning for living donor liver transplant using 4D flow MRI, computational fluid dynamics and in vitro experiments
    Rutkowski, David R.
    Reeder, Scott B.
    Fernandez, Luis A.
    Roldan-Alzate, Alejandro
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2018, 6 (05): : 545 - 555
  • [19] Measuring global cerebrovascular pulsatility transmission using 4D flow MRI
    Dempsey, Sergio
    Safaei, Soroush
    Holdsworth, Samantha J.
    Talou, Gonzalo D. Maso
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [20] Noninvasive quantification of cerebrovascular pressure changes using 4D Flow MRI
    Marlevi, David
    Schollenberger, Jonas
    Aristova, Maria
    Ferdian, Edward
    Ma, Yue
    Young, Alistair A.
    Edelman, Elazer R.
    Schnell, Susanne
    Figueroa, C. Alberto
    Nordsletten, David A.
    MAGNETIC RESONANCE IN MEDICINE, 2021, 86 (06) : 3096 - 3110