A structure-preserving algorithm for the linear lossless dissipative Hamiltonian eigenvalue problem

被引:0
|
作者
Lyu, Xing-Long [1 ,2 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 211189, Peoples R China
[2] Nanjing Ctr Appl Math, Nanjing 211135, Peoples R China
关键词
Structure-preserving algorithm; T-Hamiltonian eigenvalue problem; T-symplectic URV decomposition; periodic QR; SYSTEMS; FORMULATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose a structure-preserving algorithm for computing all eigenvalues of the generalized eigenvalue problem BAx = lambda Ex that arises in linear lossless dissipative Hamiltonian descriptor systems, with B being skew-symmetric and A(T)E = E(T)A. We rewrite the problem as BAE(-1)y = lambda y to preserve the symmetry of A(T)E and convert the problem into the equivalent T-Hamiltonian eigenvalue problem Hz = lambda z. Furthermore, T-symplectic URV decomposition and a corresponding periodic QR (PQR) method are proposed to compute all eigenvalues of H. The structurepreserving property ensures that the computed eigenvalues appear pairwise, in the form (lambda, -lambda), as they should. Numerical experiments show that the computed eigenvalues are more accurate and strictly paired than those of the classical QZ method, while the residuals of the eigenpairs are comparable.
引用
下载
收藏
页码:3 / 19
页数:17
相关论文
共 50 条
  • [31] COMPUTATIONAL EXPERIENCE WITH STRUCTURE-PRESERVING HAMILTONIAN SOLVERS IN OPTIMAL CONTROL
    Sima, Vasile
    ICINCO 2011: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 1, 2011, : 91 - 96
  • [32] Geometric Optimization for Structure-Preserving Model Reduction of Hamiltonian Systems
    Bendokat, Thomas
    Zimmermann, Ralf
    IFAC PAPERSONLINE, 2022, 55 (20): : 457 - 462
  • [33] The Hamiltonian Structure-Preserving Control and Some Applications to Nonlinear Astrodynamics
    Xu, Ming
    Wei, Yan
    Liu, Shengli
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [34] Formation Flying on Elliptic Orbits by Hamiltonian Structure-Preserving Control
    Xu, Ming
    Liang, Yuying
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2018, 41 (01) : 294 - 302
  • [35] Structure-preserving H?, control for port-Hamiltonian systems
    Breiten, Tobias
    Karsai, Attila
    SYSTEMS & CONTROL LETTERS, 2023, 174
  • [36] A structure-preserving algorithm for the quaternion Cholesky decomposition
    Wang, Minghui
    Ma, Wenhao
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 223 : 354 - 361
  • [37] Structure-preserving dynamic texture generation algorithm
    Wu, Ling-chen
    Ye, Dong-yi
    Chen, Zhao-jiong
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (14): : 8299 - 8318
  • [38] Structure-preserving dynamic texture generation algorithm
    Ling-chen Wu
    Dong-yi Ye
    Zhao-jiong Chen
    Neural Computing and Applications, 2021, 33 : 8299 - 8318
  • [39] SOLVING LARGE-SCALE QUADRATIC EIGENVALUE PROBLEMS WITH HAMILTONIAN EIGENSTRUCTURE USING A STRUCTURE-PRESERVING KRYLOV SUBSPACE METHOD
    Benner, Peter
    Fassbender, Heike
    Stoll, Martin
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2007, 29 : 212 - 229
  • [40] A Local Algorithm for Structure-Preserving Graph Cut
    Zhou, Dawei
    Zhang, Si
    Yildirim, Mehmet Yigit
    Alcorn, Scott
    Tong, Hanghang
    Davulcu, Hasan
    He, Jingrui
    KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, : 655 - 664