SOLVING LARGE-SCALE QUADRATIC EIGENVALUE PROBLEMS WITH HAMILTONIAN EIGENSTRUCTURE USING A STRUCTURE-PRESERVING KRYLOV SUBSPACE METHOD

被引:0
|
作者
Benner, Peter [1 ]
Fassbender, Heike [2 ]
Stoll, Martin [3 ]
机构
[1] TU Chemnitz, Fak Math Math Ind & Tech, D-09107 Chemnitz, Germany
[2] TU Braunschweig, Inst Computat Math, AG Numer, D-38023 Braunschweig, Germany
[3] Math Inst, Oxford OX1 3LB, England
关键词
quadratic eigenvalue problem; Hamiltonian symmetry; Krylov subspace method; symplectic Lanczos process; gyroscopic systems;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the numerical solution of quadratic eigenproblems with spectra that exhibit Hamiltonian symmetry. We propose to solve such problems by applying a Krylov-Schur-type method based on the symplectic Lanczos process to a structured linearization of the quadratic matrix polynomial. In order to compute interior eigenvalues, we discuss several shift-and-invert operators with Hamiltonian structure. Our approach is tested for several examples from structural analysis and gyroscopic systems.
引用
收藏
页码:212 / 229
页数:18
相关论文
共 50 条
  • [1] Restarted generalized Krylov subspace methods for solving large-scale polynomial eigenvalue problems
    Bao, Liang
    Lin, Yiqin
    Wei, Yimin
    NUMERICAL ALGORITHMS, 2009, 50 (01) : 17 - 32
  • [2] Restarted generalized Krylov subspace methods for solving large-scale polynomial eigenvalue problems
    Liang Bao
    Yiqin Lin
    Yimin Wei
    Numerical Algorithms, 2009, 50 : 17 - 32
  • [3] Block second-order Krylov subspace methods for large-scale quadratic eigenvalue problems
    Lin, Yiqin
    Bao, Liang
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 181 (01) : 413 - 422
  • [4] Reduced Order Method for Solving Large-Scale Quadratic Eigenvalue Problems
    Dou, Yuhang
    Jiao, Dan
    2021 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (ACES), 2021,
  • [5] A structure-preserving method for solving the complex inverted perpendicular-Hamiltonian eigenvalue problem
    Tian, Heng
    Lyu, Xing-Long
    Li, Tiexiang
    ANNALS OF MATHEMATICAL SCIENCES AND APPLICATIONS, 2021, 6 (02) : 201 - 226
  • [6] Study on performance of Krylov subspace methods at solving large-scale contact problems
    Shi, Jiancheng
    Liu, Jianhua
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2016, 84 (1-4): : 435 - 444
  • [7] Study on performance of Krylov subspace methods at solving large-scale contact problems
    Jiancheng Shi
    Jianhua Liu
    The International Journal of Advanced Manufacturing Technology, 2016, 84 : 435 - 444
  • [8] Numerical solution of quadratic eigenvalue problems with structure-preserving methods
    Hwang, TM
    Lin, WW
    Mehrmann, V
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 24 (04): : 1283 - 1302
  • [9] A minimal subspace residual method for large-scale eigenvalue problems
    Huang, YH
    Hoffman, DK
    Kouri, DJ
    JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (17): : 8303 - 8308
  • [10] Minimal subspace residual method for large-scale eigenvalue problems
    Huang, Youhong
    Hoffman, David K.
    Kouri, Donald J.
    Journal of Chemical Physics, 1999, 110 (17):