A structure-preserving algorithm for the linear lossless dissipative Hamiltonian eigenvalue problem

被引:0
|
作者
Lyu, Xing-Long [1 ,2 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 211189, Peoples R China
[2] Nanjing Ctr Appl Math, Nanjing 211135, Peoples R China
关键词
Structure-preserving algorithm; T-Hamiltonian eigenvalue problem; T-symplectic URV decomposition; periodic QR; SYSTEMS; FORMULATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose a structure-preserving algorithm for computing all eigenvalues of the generalized eigenvalue problem BAx = lambda Ex that arises in linear lossless dissipative Hamiltonian descriptor systems, with B being skew-symmetric and A(T)E = E(T)A. We rewrite the problem as BAE(-1)y = lambda y to preserve the symmetry of A(T)E and convert the problem into the equivalent T-Hamiltonian eigenvalue problem Hz = lambda z. Furthermore, T-symplectic URV decomposition and a corresponding periodic QR (PQR) method are proposed to compute all eigenvalues of H. The structurepreserving property ensures that the computed eigenvalues appear pairwise, in the form (lambda, -lambda), as they should. Numerical experiments show that the computed eigenvalues are more accurate and strictly paired than those of the classical QZ method, while the residuals of the eigenpairs are comparable.
引用
下载
收藏
页码:3 / 19
页数:17
相关论文
共 50 条