Two new regularity criteria for nematic liquid crystal flows

被引:18
|
作者
Wei, Ruiying [1 ,2 ]
Li, Yin [1 ,2 ]
Yao, Zheng-an [1 ]
机构
[1] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[2] Shaoguan Univ, Sch Math & Stat, Shaoguan 512005, Peoples R China
关键词
Liquid crystal; Regularity criteria; Weak solution; NAVIER-STOKES-EQUATIONS; ONE VELOCITY COMPONENT; WEAK SOLUTIONS; GRADIENT; R-3;
D O I
10.1016/j.jmaa.2014.10.089
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we present two new regularity criteria for three-dimensional nematic liquid crystal flows. More precisely, we show that if delta(3)u is an element of L-beta(0,T;L-alpha(R-3)) with 2/beta + 3/alpha <= 3(alpha+2)/4 alpha (alpha > 2), or u(3), del d is an element of L-beta/(0, T; L-alpha(R-3)) with 2/beta + 3/alpha <= 3/4 + 1/2 alpha (alpha > 10/3), then the corresponding weak solution (u, d) can be extended beyond T. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:636 / 650
页数:15
相关论文
共 50 条
  • [41] A new blowup criterion of strong solutions to the two-dimensional equations of compressible nematic liquid crystal flows
    Liu, Yang
    Guo, Renying
    Zhao, Weiwei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (02) : 742 - 761
  • [42] Regularity and time-periodicity for a nematic liquid crystal model
    Climent-Ezquerra, Blanca
    Guillen-Gonzalez, Francisco
    Jesus Moreno-Iraberte, M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) : 539 - 549
  • [43] Global m-Equivariant Solutions of Nematic Liquid Crystal Flows in Dimension Two
    Yuan Chen
    Yong Yu
    Archive for Rational Mechanics and Analysis, 2017, 226 : 767 - 808
  • [44] L∞ CONTINUATION PRINCIPLE FOR TWO-DIMENSIONAL COMPRESSIBLE NEMATIC LIQUID CRYSTAL FLOWS
    Zhong, Xin
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2021, 19 (01) : 55 - 72
  • [45] An Osgood type regularity criterion for the liquid crystal flows
    Zujin Zhang
    Tong Tang
    Lihan Liu
    Nonlinear Differential Equations and Applications NoDEA, 2014, 21 : 253 - 262
  • [46] Global m-Equivariant Solutions of Nematic Liquid Crystal Flows in Dimension Two
    Chen, Yuan
    Yu, Yong
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 226 (02) : 767 - 808
  • [47] An Osgood type regularity criterion for the liquid crystal flows
    Zhang, Zujin
    Tang, Tong
    Liu, Lihan
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2014, 21 (02): : 253 - 262
  • [48] An Overview on Numerical Analyses of Nematic Liquid Crystal Flows
    S. Badia
    F. Guillén-Gónzalez
    J. V. Gutiérrez-Santacreu
    Archives of Computational Methods in Engineering, 2011, 18 : 285 - 313
  • [49] Blow up Criterion for Nematic Liquid Crystal Flows
    Huang, Tao
    Wang, Changyou
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (05) : 875 - 884
  • [50] Nonuniqueness of nematic liquid crystal flows in dimension three
    Gong, Huajun
    Huang, Tao
    Li, Jinkai
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (12) : 8630 - 8648