An Osgood type regularity criterion for the liquid crystal flows

被引:4
|
作者
Zhang, Zujin [1 ]
Tang, Tong [2 ]
Liu, Lihan [3 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Jiangxi, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
[3] Chongqing Normal Univ, Dept Math, Chongqing 400030, Peoples R China
关键词
Liquid crystals; Regularity criteria; NAVIER-STOKES EQUATIONS; 3D MHD EQUATIONS; WEAK SOLUTIONS; ONE-COMPONENT; GRADIENT; TERMS;
D O I
10.1007/s00030-013-0245-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove an Osgood type regularity criterion for the model of liquid crystals, which says that the condition sup(2 <= q<infinity) integral(T)(0) parallel to(S) over bar (q)del u(t)parallel to L-infinity/qlnq dt < infinity implies the smoothness of the solution. Here, <(S)over bar>(q) = Sigma(q)(k=-q) (Delta) over dot(k) with (Delta) over dot(k) being the frequency localization operator.
引用
收藏
页码:253 / 262
页数:10
相关论文
共 50 条
  • [1] An Osgood type regularity criterion for the liquid crystal flows
    Zujin Zhang
    Tong Tang
    Lihan Liu
    Nonlinear Differential Equations and Applications NoDEA, 2014, 21 : 253 - 262
  • [2] A Regularity Criterion for the Nematic Liquid Crystal Flows
    Yong Zhou
    Jishan Fan
    Journal of Inequalities and Applications, 2010
  • [3] A Regularity Criterion for the Nematic Liquid Crystal Flows
    Zhou, Yong
    Fan, Jishan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [4] A new regularity criterion for the nematic liquid crystal flows
    Gala, Sadek
    Liu, Qiao
    Ragusa, Maria Alessandra
    APPLICABLE ANALYSIS, 2012, 91 (09) : 1741 - 1747
  • [5] Regularity Criterion for the Nematic Liquid Crystal Flows in Terms of Velocity
    Wei, Ruiying
    Yao, Zheng-an
    Li, Yin
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [6] Remarks on the regularity criterion for the nematic liquid crystal flows in R3
    Qian, Chenyin
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 274 : 679 - 689
  • [7] A new regularity criterion for the 3D nematic liquid crystal flows
    Ben Omrane, Ines
    Ben Slimane, Mourad
    Gala, Sadek
    Ragusa, Maria Alessandra
    ANALYSIS AND APPLICATIONS, 2025, 23 (02) : 287 - 306
  • [8] An Osgood Type Regularity Criterion for the 3D Boussinesq Equations
    Wu, Qiang
    Hu, Lin
    Liu, Guili
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [9] A note on regularity criterion for 3D compressible nematic liquid crystal flows
    Chen, Xiaochun
    Fan, Jishan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [10] A note on regularity criterion for 3D compressible nematic liquid crystal flows
    Xiaochun Chen
    Jishan Fan
    Journal of Inequalities and Applications, 2012