An Osgood type regularity criterion for the liquid crystal flows

被引:4
|
作者
Zhang, Zujin [1 ]
Tang, Tong [2 ]
Liu, Lihan [3 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Jiangxi, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
[3] Chongqing Normal Univ, Dept Math, Chongqing 400030, Peoples R China
关键词
Liquid crystals; Regularity criteria; NAVIER-STOKES EQUATIONS; 3D MHD EQUATIONS; WEAK SOLUTIONS; ONE-COMPONENT; GRADIENT; TERMS;
D O I
10.1007/s00030-013-0245-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove an Osgood type regularity criterion for the model of liquid crystals, which says that the condition sup(2 <= q<infinity) integral(T)(0) parallel to(S) over bar (q)del u(t)parallel to L-infinity/qlnq dt < infinity implies the smoothness of the solution. Here, <(S)over bar>(q) = Sigma(q)(k=-q) (Delta) over dot(k) with (Delta) over dot(k) being the frequency localization operator.
引用
收藏
页码:253 / 262
页数:10
相关论文
共 50 条
  • [21] A regularity criterion for liquid crystal flows in terms of the component of velocity and the horizontal derivative components of orientation field
    Li, Qiang
    Yuan, Baoquan
    AIMS MATHEMATICS, 2022, 7 (03): : 4168 - 4175
  • [22] Two regularity criteria of solutions to the liquid crystal flows
    Li, Qiang
    Yuan, Baoquan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (08) : 9167 - 9176
  • [23] Blow up Criterion for Nematic Liquid Crystal Flows
    Huang, Tao
    Wang, Changyou
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (05) : 875 - 884
  • [24] A Serrin criterion for compressible nematic liquid crystal flows
    Huang, Xiangdi
    Wang, Yun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (11) : 1363 - 1375
  • [25] Regularity of solutions to the liquid crystal flows with rough initial data
    Lin, Junyu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (09) : 2778 - 2800
  • [26] Two new regularity criteria for nematic liquid crystal flows
    Wei, Ruiying
    Li, Yin
    Yao, Zheng-an
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (01) : 636 - 650
  • [27] Regularity criterion for 3D nematic liquid crystal flows in terms of finite frequency parts in B∞,∞-1
    Chen, Xiaoli
    Cheng, Haiyan
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01):
  • [28] A regularity criterion via horizontal components of velocity and molecular orientations for the 3D nematic liquid crystal flows
    Li, Qiang
    Zou, Mianlu
    AIMS MATHEMATICS, 2022, 7 (05): : 9278 - 9287
  • [29] LPS'S CRITERION FOR INCOMPRESSIBLE NEMATIC LIQUID CRYSTAL FLOWS
    Chen, Qing
    Tan, Zhong
    Wu, Guochun
    ACTA MATHEMATICA SCIENTIA, 2014, 34 (04) : 1072 - 1080
  • [30] LPS’S CRITERION FOR INCOMPRESSIBLE NEMATIC LIQUID CRYSTAL FLOWS
    陈卿
    谭忠
    吴国春
    Acta Mathematica Scientia, 2014, (04) : 1072 - 1080