Regularity and time-periodicity for a nematic liquid crystal model

被引:25
|
作者
Climent-Ezquerra, Blanca [1 ]
Guillen-Gonzalez, Francisco [1 ]
Jesus Moreno-Iraberte, M. [1 ]
机构
[1] Univ Seville, Dpto Ecuaciones Diferenciales & Anal Numer, E-41080 Seville, Spain
关键词
Solution up to infinity time; Time-periodic solutions; Uniqueness; Navier-Stokes equations; Nematic liquid crystal models; Coupled nonlinear parabolic system;
D O I
10.1016/j.na.2008.10.092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper two main results are obtained for a nematic liquid crystal model with time-dependent boundary Dirichlet data for the orientation of the crystal molecules. First, the initial-boundary problem is considered, obtaining the existence of global in time (up to infinity time) weak solution, the existence of global regular solution for viscosity coefficient big enough, and the weak/strong uniqueness. Second, using these previous results and the existence of time-periodic weak solutions proved in [B. Climent-Ezquerra, F. Guillen-Gonzalez, M.A. Rojas-Medar, Reproductivity for a nematic liquid crystal model, Z. Angew. Math. Phys. 576 (6) (2006) 984-998], the regularity of any time-periodic weak solution is deduced for viscosity coefficient big enough. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:539 / 549
页数:11
相关论文
共 50 条
  • [1] GLOBAL IN TIME SOLUTION AND TIME-PERIODICITY FOR A SMECTIC-A LIQUID CRYSTAL MODEL
    Climent-Ezquerra, Blanca
    Guillen-Gonzalez, Francisco
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (06) : 1473 - 1493
  • [2] Periodicity in nematic liquid crystal walls
    Phys Rev E., 6 (6952):
  • [3] Periodicity in nematic liquid crystal walls
    Simoes, M
    PHYSICAL REVIEW E, 1996, 54 (06): : 6952 - 6954
  • [4] Partial regularity of a nematic liquid crystal model with kinematic transport effects
    Du, Hengrong
    Wang, Changyou
    NONLINEARITY, 2021, 34 (05) : 3001 - 3045
  • [5] A Regularity Criterion for the Nematic Liquid Crystal Flows
    Yong Zhou
    Jishan Fan
    Journal of Inequalities and Applications, 2010
  • [6] A Regularity Criterion for the Nematic Liquid Crystal Flows
    Zhou, Yong
    Fan, Jishan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [7] A new regularity criterion for the nematic liquid crystal flows
    Gala, Sadek
    Liu, Qiao
    Ragusa, Maria Alessandra
    APPLICABLE ANALYSIS, 2012, 91 (09) : 1741 - 1747
  • [8] Sufficient conditions for regularity and uniqueness of a 3D nematic liquid crystal model
    Guillen-Gonzalez, F.
    Rodriguez-Bellido, M. A.
    Rojas-Medar, M. A.
    MATHEMATISCHE NACHRICHTEN, 2009, 282 (06) : 846 - 867
  • [9] A dengue fever model with free boundary incorporating the time-periodicity and spatial-heterogeneity
    Zhu, Min
    Xu, Yong
    Zhang, Lai
    Cao, Jinde
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (01) : 301 - 323
  • [10] Regularity Criterion for the Nematic Liquid Crystal Flows in Terms of Velocity
    Wei, Ruiying
    Yao, Zheng-an
    Li, Yin
    ABSTRACT AND APPLIED ANALYSIS, 2014,