Regularity and time-periodicity for a nematic liquid crystal model

被引:25
|
作者
Climent-Ezquerra, Blanca [1 ]
Guillen-Gonzalez, Francisco [1 ]
Jesus Moreno-Iraberte, M. [1 ]
机构
[1] Univ Seville, Dpto Ecuaciones Diferenciales & Anal Numer, E-41080 Seville, Spain
关键词
Solution up to infinity time; Time-periodic solutions; Uniqueness; Navier-Stokes equations; Nematic liquid crystal models; Coupled nonlinear parabolic system;
D O I
10.1016/j.na.2008.10.092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper two main results are obtained for a nematic liquid crystal model with time-dependent boundary Dirichlet data for the orientation of the crystal molecules. First, the initial-boundary problem is considered, obtaining the existence of global in time (up to infinity time) weak solution, the existence of global regular solution for viscosity coefficient big enough, and the weak/strong uniqueness. Second, using these previous results and the existence of time-periodic weak solutions proved in [B. Climent-Ezquerra, F. Guillen-Gonzalez, M.A. Rojas-Medar, Reproductivity for a nematic liquid crystal model, Z. Angew. Math. Phys. 576 (6) (2006) 984-998], the regularity of any time-periodic weak solution is deduced for viscosity coefficient big enough. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:539 / 549
页数:11
相关论文
共 50 条
  • [31] A note on regularity criterion for 3D compressible nematic liquid crystal flows
    Chen, Xiaochun
    Fan, Jishan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [32] A further note on the regularity criterion for the 3D nematic liquid crystal flows
    Qian, Chenyin
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 290 : 258 - 266
  • [33] A note on regularity criterion for 3D compressible nematic liquid crystal flows
    Xiaochun Chen
    Jishan Fan
    Journal of Inequalities and Applications, 2012
  • [34] Maximal regularity of the spatially periodic stokes operator and application to nematic liquid crystal flows
    Sauer, Jonas
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2016, 66 (01) : 41 - 55
  • [35] Formation of a nematic monodomain in a model liquid crystal film
    Mills, SJ
    Care, CM
    Neal, MP
    Wilson, MR
    Allen, MP
    Cleaver, DJ
    JOURNAL OF MOLECULAR LIQUIDS, 2000, 85 (1-2) : 185 - 195
  • [36] A mathematical model for blade coating of a nematic liquid crystal
    Carou, J. Quintans
    Mottram, N. J.
    Wilson, S. K.
    Duffy, B. R.
    LIQUID CRYSTALS, 2007, 34 (05) : 621 - 631
  • [37] Nonlocal model for nematic liquid-crystal elastomers
    Ennis, R.
    Malacarne, L. C.
    Palffy-Muhoray, P.
    Shelley, M.
    PHYSICAL REVIEW E, 2006, 74 (06):
  • [38] Intrinsic frame transport for a model of nematic liquid crystal
    Cozzini, S
    Rull, LF
    Ciccotti, G
    Paolini, GV
    PHYSICA A, 1997, 240 (1-2): : 173 - 187
  • [39] A VANDERWAALS MODEL FOR THE NEMATIC LIQUID-CRYSTAL MIXTURES
    SOKOLOVA, EP
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1990, 192 : 179 - 183
  • [40] Intrinsic frame transport for a model of nematic liquid crystal
    Cozzini, S.
    Rull, L.F.
    Ciccotti, G.
    Paolini, G.V.
    Physica A: Statistical Mechanics and its Applications, 1997, 240 (1-2): : 173 - 187