Regularity and time-periodicity for a nematic liquid crystal model

被引:25
|
作者
Climent-Ezquerra, Blanca [1 ]
Guillen-Gonzalez, Francisco [1 ]
Jesus Moreno-Iraberte, M. [1 ]
机构
[1] Univ Seville, Dpto Ecuaciones Diferenciales & Anal Numer, E-41080 Seville, Spain
关键词
Solution up to infinity time; Time-periodic solutions; Uniqueness; Navier-Stokes equations; Nematic liquid crystal models; Coupled nonlinear parabolic system;
D O I
10.1016/j.na.2008.10.092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper two main results are obtained for a nematic liquid crystal model with time-dependent boundary Dirichlet data for the orientation of the crystal molecules. First, the initial-boundary problem is considered, obtaining the existence of global in time (up to infinity time) weak solution, the existence of global regular solution for viscosity coefficient big enough, and the weak/strong uniqueness. Second, using these previous results and the existence of time-periodic weak solutions proved in [B. Climent-Ezquerra, F. Guillen-Gonzalez, M.A. Rojas-Medar, Reproductivity for a nematic liquid crystal model, Z. Angew. Math. Phys. 576 (6) (2006) 984-998], the regularity of any time-periodic weak solution is deduced for viscosity coefficient big enough. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:539 / 549
页数:11
相关论文
共 50 条
  • [21] Uniqueness and regularity of conservative solution to a wave system modeling nematic liquid crystal
    Cai, Hong
    Chen, Geng
    Du, Yi
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 117 : 185 - 220
  • [22] Mesoscopic model of nematic liquid crystal viscosity
    Chrzanowska, A
    Kröger, M
    Muschik, W
    Papenfuss, C
    Ehrentraut, H
    Sellers, S
    SLOW DYNAMICS IN COMPLEX SYSTEMS, 1999, 469 : 162 - 163
  • [23] A new regularity criterion for the 3D nematic liquid crystal flows
    Ben Omrane, Ines
    Ben Slimane, Mourad
    Gala, Sadek
    Ragusa, Maria Alessandra
    ANALYSIS AND APPLICATIONS, 2025, 23 (02) : 287 - 306
  • [24] Remarks on the regularity criterion for the nematic liquid crystal flows in R3
    Qian, Chenyin
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 274 : 679 - 689
  • [25] Measurement methods of nematic liquid crystal response time
    Utsumi, Y
    Kamei, T
    Naito, R
    Saito, K
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2005, 434 : 337 - 352
  • [26] Nematic liquid crystal pixel with microsecond response time
    Kucheev, S. I.
    ASID'04: Proceedings of the 8th Asian Symposium on Information Display, 2004, : 594 - 597
  • [27] Time Domain Reflectometry Studies on a Nematic Liquid Crystal
    Fattepur, R. H.
    Ayachit, N. H.
    Mehrotra, S. C.
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2009, 501 : 20 - 27
  • [28] Direct chaotic flux quantification in perturbed planar flows: General time-periodicity
    Balasuriya, S
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2005, 4 (02): : 282 - 311
  • [29] Global regularity to the 3D incompressible nematic liquid crystal flows with vacuum
    Yu, Haibo
    Zhang, Peixin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 174 : 209 - 222
  • [30] Maximal regularity of the spatially periodic stokes operator and application to nematic liquid crystal flows
    Jonas Sauer
    Czechoslovak Mathematical Journal, 2016, 66 : 41 - 55