A dengue fever model with free boundary incorporating the time-periodicity and spatial-heterogeneity

被引:0
|
作者
Zhu, Min [1 ]
Xu, Yong [2 ]
Zhang, Lai [3 ]
Cao, Jinde [4 ,5 ]
机构
[1] Anhui Normal Univ, Sch Math & Stat, Wuhu, Peoples R China
[2] Anhui Normal Univ, Sch Comp & Informat, Wuhu, Peoples R China
[3] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
[4] Southeast Univ, Sch Math, Nanjing, Peoples R China
[5] Yonsei Univ, Yonsei Frontier Lab, Seoul, South Korea
基金
中国国家自然科学基金;
关键词
dengue fever model; spatial heterogeneity; temporal-spatial basic reproduction ratio; time periodicity; DIFFUSION-ADVECTION MODEL; TRANSMISSION MODEL; EPIDEMIC MODEL; RISK INDEX; DISEASE; DYNAMICS; SYSTEMS; SPREAD;
D O I
10.1002/mma.7776
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Propagation of dengue fever is characterized by periodicity and seasonality and further influenced by geographic heterogeneity. To account for these characteristics, we formulate a dengue model in a spatial-heterogeneous and time-periodic environment. Moreover, the free boundary is additionally incorporated into our model to reflect the boundary change of region where dengue virus spreads. Employing the properties of the contagion risk threshold, that is the spatial-temporal basic reproduction ratio, we derive some sufficient conditions regarding the vanishing and spreading of virus. Importantly, the long-time asymptotic behavior of solution is studied in depth when spreading happens. Our findings manifest that as time goes on, dengue virus will behave periodically when spreading. Finally, these phenomena are numerically simulated and epidemiologically explained.
引用
收藏
页码:301 / 323
页数:23
相关论文
共 50 条
  • [1] Regularity and time-periodicity for a nematic liquid crystal model
    Climent-Ezquerra, Blanca
    Guillen-Gonzalez, Francisco
    Jesus Moreno-Iraberte, M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) : 539 - 549
  • [2] IDEAL FREE DISPERSAL UNDER GENERAL SPATIAL HETEROGENEITY AND TIME PERIODICITY
    Cantrell, Robert Stephen
    Cosner, Chris
    Lam, King-Yeung
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2021, 81 (03) : 789 - 813
  • [3] GLOBAL IN TIME SOLUTION AND TIME-PERIODICITY FOR A SMECTIC-A LIQUID CRYSTAL MODEL
    Climent-Ezquerra, Blanca
    Guillen-Gonzalez, Francisco
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (06) : 1473 - 1493
  • [4] Evolutionary stability of ideal free dispersal under spatial heterogeneity and time periodicity
    Cantrell, Robert Stephen
    Cosner, Chris
    MATHEMATICAL BIOSCIENCES, 2018, 305 : 71 - 76
  • [5] Global dynamics of a dengue fever model incorporating transmission seasonality*
    Zhu, Min
    Feng, Tingting
    Xu, Yong
    Cao, Jinde
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2023, 28 (03): : 554 - 577
  • [6] Spatial heterogeneity of dengue fever in local studies, City of Niteroi, Southeastern Brazil
    Flauzino, Regina Fernandes
    Souza-Santos, Reinaldo
    Barcelllos, Christovam
    Gracie, Renata
    Figueiredo Mafra Magalhaes, Monica de Avelar
    de Oliveira, Rosely Magalhaes
    REVISTA DE SAUDE PUBLICA, 2009, 43 (06):
  • [7] An individual based model for heterogeneous dengue transmission incorporating both age-dependent biting and spatial heterogeneity
    Minnick, Sharon L.
    Morrison, Amy C.
    Scott, Thomas W.
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2006, 75 (05): : 109 - 109
  • [8] Incorporating the human-Aedes mosquito interactions into measuring the spatial risk of urban dengue fever
    Wen, Tzai-Hung
    Lin, Min-Hau
    Teng, Hwa-Jen
    Chang, Niann-Tai
    APPLIED GEOGRAPHY, 2015, 62 : 256 - 266
  • [9] Spatial model of Dengue Hemorrhagic Fever (DHF) risk: scoping review
    Pakaya, Ririn
    Daniel, D.
    Widayani, Prima
    Utarini, Adi
    BMC PUBLIC HEALTH, 2023, 23 (01)
  • [10] Spatial model of Dengue Hemorrhagic Fever (DHF) risk: scoping review
    Ririn Pakaya
    D. Daniel
    Prima Widayani
    Adi Utarini
    BMC Public Health, 23