Recursive Renyi's Entropy estimator for adaptive filtering

被引:0
|
作者
Xu, JW [1 ]
Erdogmus, D [1 ]
Ozturk, MC [1 ]
Principe, JC [1 ]
机构
[1] Univ Florida, Dept Elect & Comp Engn, Comp Neuroengn Lab, Gainesville, FL 32611 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently we have proposed a recursive estimator for Renyi's quadratic entropy. This estimator can converge to accurate results for stationary signals or track the changing entropy of nonstationary signals. In this paper, we demonstrate the application of the recursive entropy estimator to supervised and unsupervised training of linear and nonlinear adaptive systems. The simulations suggest a smooth and fast convergence to the optimal solution with a reduced complexity in the algorithm compared to a batch training approach using the same entropy-based criteria. The presented approach also allows on-line information theoretic adaptation of model parameters.
引用
收藏
页码:134 / 137
页数:4
相关论文
共 50 条
  • [41] Recursive optical flow estimation - Adaptive filtering approach
    Elad, M
    Feuer, A
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 1998, 9 (02) : 119 - 138
  • [42] A model-based adaptive motion estimation scheme using Renyi's entropy for wireless video
    Ramachandran, G
    Krishnan, V
    Wu, DP
    He, ZH
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2005, 16 (4-5) : 432 - 449
  • [43] Fractional Renyi entropy
    Tenreiro Machado, J. A.
    Lopes, Antonio M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (05):
  • [44] Renyi entropy and geometry
    Lee, Jeongseog
    McGough, Lauren
    Safdi, Benjamin R.
    PHYSICAL REVIEW D, 2014, 89 (12):
  • [45] Quality Evaluation of Adaptive Optical Image Based on DCT and Renyi Entropy
    Xu Yuannan
    Li Junwei
    Wang Jing
    Deng Rong
    Dong Yanbing
    SELECTED PAPERS FROM CONFERENCES OF THE PHOTOELECTRONIC TECHNOLOGY COMMITTEE OF THE CHINESE SOCIETY OF ASTRONAUTICS 2014, PT II, 2015, 9522
  • [46] Stabilizer Renyi Entropy
    Leone, Lorenzo
    Oliviero, Salvatore F. E.
    Hamma, Alioscia
    PHYSICAL REVIEW LETTERS, 2022, 128 (05)
  • [47] On the Polarization of Renyi Entropy
    Zheng, Mengfan
    Liu, Ling
    Ling, Cong
    2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 2094 - 2098
  • [48] Entanglement Renyi α entropy
    Wang, Yu-Xin
    Mu, Liang-Zhu
    Vedral, Vlatko
    Fan, Heng
    PHYSICAL REVIEW A, 2016, 93 (02)
  • [49] Supersymmetric Renyi entropy
    Nishioka, Tatsuma
    Yaakov, Itamar
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (10):
  • [50] RENYI ENTROPY AND RECURRENCE
    Ko, Milton
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (06) : 2403 - 2421