On the inclusion of some Lorentz spaces

被引:0
|
作者
Gürkanli, AT [1 ]
机构
[1] Ondokuz Mayis Univ, Fac Art & Sci, Dept Math, TR-55139 Kurupelit, Samsun, Turkey
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, Sigma, mu) be a measure space. It is well known that l(p)(X) subset of or equal to l(q) (X) whenever 0 < p less than or equal to q less than or equal to infinity. Subramanian [12] characterized all positive measures it on (X, E) for which L-p(mu) subset of or equal to L-q (mu) whenever 0 < p less than or equal to q less than or equal to infinity and Romero [10] completed and improved some results of Subramanian [12]. Miamee [6] considered the more general inclusion L-p(mu) subset of or equal to L-q (nu) where mu and nu are two measures on (X, Sigma). Let L(p(1), q(1))(X, mu) and L(p(2), q(2))(X, nu) be two Lorentz spaces,where 0 < p(1), p(2) < infinity and 0 < q(1), q(2) less than or equal to infinity. In this work we generalized these results to the Lorentz spaces and investigated that under what conditions L(p(1), q(1)) (X, mu) subset of or equal to L(p(2), q(2)) (X, nu) for two different measures mu and nu on (X, Sigma).
引用
收藏
页码:441 / 450
页数:10
相关论文
共 50 条
  • [41] TENT SPACES BASED ON THE LORENTZ SPACES
    BONAMI, A
    JOHNSON, R
    MATHEMATISCHE NACHRICHTEN, 1987, 132 : 81 - 99
  • [42] Spaces of Lorentz multipliers
    Hare, KE
    Sato, E
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2001, 53 (03): : 565 - 591
  • [43] CLASS OF LORENTZ SPACES
    DEBEVER, R
    BULLETIN DE LA CLASSE DES SCIENCES ACADEMIE ROYALE DE BELGIQUE, 1974, 60 (09): : 998 - 1011
  • [44] Lorentz capacity spaces
    Cerda, Joan
    INTERPOLATION THEORY AND APPLICATIONS, 2007, 445 : 45 - 59
  • [45] DUALS OF LORENTZ SPACES
    ALLEN, GD
    PACIFIC JOURNAL OF MATHEMATICS, 1978, 77 (02) : 287 - 291
  • [46] LORENTZ SEQUENCE SPACES
    RAKOV, SA
    MATHEMATICAL NOTES, 1976, 20 (3-4) : 837 - 842
  • [47] Dichotomies for Lorentz spaces
    Glab, Szymon
    Strobin, Filip
    Yang, Chan Woo
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (07): : 1228 - 1242
  • [48] EIGENVALUE INCLUSION WITH LORENTZ CONES
    ELSNER, L
    HADELER, KP
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1970, 50 (6-7): : 427 - &
  • [49] THE RIESZ CONVERGENCE PROPERTY ON WEIGHTED LORENTZ SPACES AND ORLICZ-LORENTZ SPACES
    Li, Hongliang
    QUAESTIONES MATHEMATICAE, 2013, 36 (02) : 181 - 196
  • [50] On some geometric and topological properties of generalized Orlicz-Lorentz sequence spaces
    Foralewski, Pawe
    Hudzik, Henryk
    Szyrnaszkiewicz, Lucjan
    MATHEMATISCHE NACHRICHTEN, 2008, 281 (02) : 181 - 198